Journal of Sulfur Chemistry
7
into H2O. The precipitate was filtered, and purified on a chromatographic column (petroleum
ether–EtOAc, 10:5).
(5a) Yield 53%, m.p. 129–131◦C (EtOH). 1H NMR (300 MHz, CDCl3, δ, ppm): 1.52 (d, 6H,
NCHCH3CH3, J = 7.1); 2.19 (s, 3H, CH3); 2.53 (s, 3H, CH3); 3.15 (s, 3H, NCH3); 3.93 (s,
3H, OCH3); 5.11 (quartet, 1H, NCHCH3CH3, J = 7.1); 5.56 (s, 2H, CH2); 7.01–7.29 (m, 2H,
ArH); 7.36–7.57 (m, 4H, Ar); 7.69–7.83 (m, 4H, Ar); 8.10 (m, 1H, ArH); 8.12 (s, 1H, imidazole).
13C NMR (50 MHz, CDCl3, δ, ppm): 22.01 (CH3); 29.69 (NCHCH3CH3); 32.00 (NCH3); 46.30
(CH2); 48.61 (NCHCH3CH3); 55.46 (OCH3); 113.37; 114.00; 118.62; 122.10; 122.24; 122.29;
122.42; 123.09; 123.50; 124.31; 124.65; 124.73; 124.82; 125.47; 130.98; 131.10; 131.21; 138.27;
138.41; 144.90; 145.04; 155.17; 160.23; 191.04 (C O). 19F NMR (280 MHz, CDCl3, δ, ppm):
=
−110.48 – (−111.25) (m, 4F, CF2); 133.37 – (−133.54) (m, 2F, CF2). HRMS (ESI) (m/z) [MH+]
calc. for C43H33F6N5O3S2: 846.2002; found 846.1977.
(5b) Yield 50%, m.p. 130–134◦C (EtOH).1H NMR (300 MHz, CDCl3, δ, ppm): 1.51 (d,
6H, NCHCH3CH3, J = 6.6); 2.26 (s, 3H, CH3); 2.53 (s, 3H, CH3); 3.96 (s, 3H, OCH3);
4.00 (s, 3H, OCH3); 5.11 (quartet, 1H, NCHCH3CH3, J = 6.6); 5.65 (s, 2H, CH2); 7.01–
7.29 (m, 1H, ArH); 7.36–7.57 (m, 4H, Ar); 7.69–7.83 (m, 4H, Ar); 7.92 (m, 1H, ArH); 8.04
(s, 1H, thiazole). 13C NMR (50 MHz, CDCl3, δ, ppm): 21.97 (CH3); 29.72 (NCHCH3CH3);
48.12 (CH2); 48.95 (NCHCH3CH3); 56.10 (OCH3); 56.14 (OCH3); 110.90; 111.82; 112.20;
113.37; 114.00; 118.62; 122.10; 122.24; 122.29; 122.42; 123.09; 123.50; 124.31; 124.65; 124.73;
124.82; 125.47; 130.98; 131.10; 131.21; 138.27; 138.41; 144.90; 145.04; 155.17; 160.23; 191.05
(C O). 19F NMR (280 MHz, CDCl3, δ, ppm): −110.48 – (−111.25) (m, 4F, CF2); 133.37 –
=
(−133.54) (m, 2F, CF2). HRMS (ESI) (m/z) [MH+] calc. for C43H32F6N4O4S3: 879.1563; found
876.1558.
4.2. General procedure for the preparation of compounds 6a, 6b and 7
To a solution of compounds 3 (50 mg, 0.07 mmol) and 4a (47 mg, 0.014 mmol) in DMF (0.5 ml)
was added K2CO3 (10 mg, 0.07 mmol) and the mixture was stirred at RT for 24 h and poured
into H2O. The precipitate was filtered, and purified on a chromatographic column (petroleum
ether–EtOAc, 1:1).
(6a)Yield 40%, m.p. 151–155◦C (EtOH). 1H NMR (300 MHz, CDCl3, δ, ppm): 1.52 (d, 12H,
NCHCH3CH3, J = 7.1); 2.20 (s, 6H, CH3); 3.16 (s, 6H, NCH3); 3.94 (s, 6H, OCH3); 5.11 (quartet,
2H, NCHCH3CH3, J = 7.1); 5.55 (s; 4H; CH2); 7.00–7.28 (m, 2H, ArH); 7.35–7.58 (m, 4H, Ar);
7.69–7.83 (m; 4H;Ar); 8.10 (m, 2H,ArH); 8.15 (s, 2H, imidazole). 13C NMR (50 MHz, CDCl3, δ,
ppm): 22.02 (CH3); 29.70 (NCHCH3CH3); 32.02 (NCH3); 46.35 (CH2); 48.62 (NCHCH3CH3);
55.45 (OCH3); 113.39; 114.00; 118.65; 122.10; 122.25; 122.30; 122.45; 123.09; 123.50; 124.32;
124.65; 124.74; 124.83; 125.47; 130.98; 131.15; 131.22; 138.28; 138.42; 144.90; 145.05; 155.18;
160.23; 191.05 (C O). 19F NMR (280 MHz, CDCl3, δ, ppm): −110.48 – (−111.25) (m, 4F,
=
CF2); 133.37 – (−133.54) (m, 2F, CF2). HRMS (ESI) (m/z) [MH+] calc. for C62H50F6N10O6S2:
1210.3003; found 1210.3000.
(6b)Yield 45%, m.p. 150–154◦C (EtOH). 1H NMR (300 MHz, CDCl3, δ, ppm): 1.51 (d, 12H,
NCHCH3CH3, J = 6.6); 2.28 (s, 6H, CH3); 3.97 (s, 6H, OCH3); 4.01 (s, 6H, OCH3); 5.11 (quartet,
2H, NCHCH3CH3, J = 6.6); 5.65 (s, 4H, CH2); 7.01–7.29 (m, 2H, ArH); 7.36–7.57 (m, 4H, Ar);
7.69–7.83 (m, 4H, Ar); 7.92 (m, 2H, ArH); 8.04 (s, 2H, thiazole). 13C NMR (50 MHz, CDCl3, δ,
ppm): 21.97 (CH3); 29.73 (NCHCH3CH3); 48.15 (CH2); 48.96 (NCHCH3CH3); 56.10 (OCH3);
56.14 (OCH3); 110.91; 111.83; 112.25; 113.39; 114.00; 118.62; 122.10; 122.24; 122.29; 122.42;
123.09; 123.50; 124.31; 124.65; 124.73; 124.82; 125.47; 130.99; 131.10; 131.23; 138.27; 138.41;
144.90; 145.04; 155.17; 160.23; 191.05 (C O). 19F NMR (280 MHz, CDCl3, δ, ppm): −110.48
=
– (−111.25) (m, 4F, CF2); 133.37 – (−133.54) (m, 2F, CF2). HRMS (ESI) (m/z) [MH+] calc.
for C63H50F6N8O8S4: 1289.2611; found 1289.2607.