ACS Catalysis
Page 4 of 6
(9) Selected recent examples of electrochemical C–H functionaliꢀ
C–H thiolation strategy in the synthesis of other Sꢀ
zation: (a) Hayashi, R.; Shimizu, A.; Yoshida, J.ꢀi. J. Am. Chem. Soc.
2016, 138, 8400–8403. (b) Morofuji, T.; Shimizu, A.; Yoshida, J.ꢀi. J.
Am. Chem. Soc. 2015, 137, 9816–9819. (c) Kang, L.ꢀS.; Luo, M.ꢀH.;
Lam, C. M.; Hu, L.ꢀM.; Little, R. D.; Zeng, C.ꢀC. Green Chem. 2016,
18, 3767–3774. (d) Yoo, S. J.; Li, L.ꢀJ.; Zeng, C.ꢀC.; Little, R. D.
Angew. Chem., Int. Ed. 2015, 54, 3744–3747. (e) Wiebe, A.;
Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. An-
gew. Chem., Int. Ed. 2016, 55, 11801–11805. (f) Lips, S.; Wiebe, A.;
Elsler, B.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S.
R. Angew. Chem., Int. Ed. 2016, 55, 10872–10876. (g) Ding, H.;
DeRoy, P. L.; Perreault, C.; Larivée, A.; Siddiqui, A.; Caldwell, C. G.;
Harran, S.; Harran, P. G. Angew. Chem., Int. Ed. 2015, 54, 4818–
4822. (h) Broese, T.; Francke, R. Org. Lett. 2016, 18, 5896–5899.
(10) Tabaković, I.; Trkovnik, M.; Batušić, M.; Tabaković, K. Syn-
thesis 1979, 590–592.
(11) (a) Hou, Z.ꢀW.; Mao, Z.ꢀY.; Zhao, H.ꢀB.; Melcamu, Y. Y.; Lu,
X.; Song, J.; Xu, H.ꢀC. Angew. Chem., Int. Ed. 2016, 55, 9168–9172.
(b) Zhao, H.ꢀB.; Hou, Z.ꢀW.; Liu, Z.ꢀJ.; Zhou, Z.ꢀF.; Song, J.; Xu, H.ꢀ
C. Angew. Chem., Int. Ed. 2017, 56, 587–590. (c) Xu, F.; Zhu, L.;
Zhu, S.ꢀB.; Yan, X.ꢀM.; Xu, H.ꢀC. Chem. Eur. J. 2014, 20, 12740–
12744. (d) Zhu, L.; Xiong, P.; Mao, Z. Y.; Wang, Y. H.; Yan, X.; Lu,
X.; Xu, H.ꢀC. Angew. Chem., Int. Ed. 2016, 55, 2226–2229.
(12) Recent examples of electroorganic synthesis employing oxyꢀ
genꢀcentered radicals as redox catalysts: (a) Badalyan, A.; Stahl, S. S.
Nature 2016, 535, 406–410. (b) Rafiee, M.; Miles, K. C.; Stahl, S. S.
J. Am. Chem. Soc. 2015, 137, 14751–14757. (c) Horn, E. J.; Rosen, B.
R.; Chen, Y.; Tang, J.; Chen, K.; Eastgate, M. D.; Baran, P. S. Nature
2016, 533, 77–81. (d) Cha, H. G.; Choi, K.ꢀS. Nat. Chem. 2015, 7,
328–333. (e) Li, C.; Zeng, C.ꢀC.; Hu, L.ꢀM.; Yang, F.ꢀL.; Yoo, S. J.;
Little, R. D. Electrochim. Acta 2013, 114, 560–566. (f) Schämann, M.;
Schäfer, H. J. Electrochim. Acta 2005, 50, 4956–4972.
(13) Examples of electrochemical synthesis of benzothiazoles, see
ref. (10) and: (a) Morofuji, T.; Shimizu, A.; Yoshida, J.ꢀi. Chem. Eur.
J. 2015, 21, 3211–3214. (b) Lai, Y.ꢀL.; Ye, J.ꢀS.; Huang, J.ꢀM. Chem.
Eur. J. 2016, 22, 5425–5429. (c) Llorente, M. J.; Nguyen, B. H.; Kuꢀ
biak, C. P.; Moeller, K. D. J. Am. Chem. Soc. 2016, 138, 15110–
15113.
(14) (a) Inokuchi, T.; Matsumoto, S.; Torii, S. J. Org. Chem. 1991,
56, 2416–2421. (b) Tebben, L.; Studer, A. Angew. Chem., Int. Ed.
2011, 50, 5034–5048.
(15) The addition of water reduced the formation of unidentifiable
side products. But its role remained unclear to us.
(16) (a) Examples of TEMPOꢀcatalyzed oxidation of thioethers:
Lang, X.; Zhao, J.; Chen, X. Angew. Chem., Int. Ed. 2016, 55, 4697–
4700. (b) Chinnusamy, T.; Reiser, O. ChemSusChem 2010, 3, 1040–
1042.
1
2
3
4
5
6
7
8
heterocycles is underway in our laboratory.
AUTHOR INFORMATION
Corresponding Author
*haichao.xu@xmu.edu.cn
*jssong@fjirsm@ac.cn
Author Contributions
9
X.ꢀY.Q. and S.ꢀQ.L. contributed equally to this work.
Notes
The authors declare no competing financial interest.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information. The experimental procedure, characterꢀ
ization data, computational studies and copies of 1H and 13C NMR
spectra. The Supporting Information is available free of charge
ACKNOWLEDGMENT
We are grateful for financial support from MOST
(2016YFA0204100), NSFC (No. 21402164, 21672178,
21603227), the “Thousand Youth Talents Plan” and XMU.
REFERENCES
(1) (a) Girard, S. A.; Knauber, T.; Li, C.ꢀJ. Angew. Chem., Int. Ed.
2014, 53, 74–100. (b) Liu, C.; Liu, D.; Lei, A.ꢀW. Acc. Chem. Res.
2014, 47, 3459–3470. (c) Liu, C.; Zhang, H.; Shi, W.; Lei, A.ꢀW.
Chem. Rev. 2011, 111, 1780–1824. (d) Yeung, C. S.; Dong, V. M.
Chem. Rev. 2011, 111, 1215–1292. (e) Zhang, C.; Tang, C.; Jiao, N.
Chem. Soc. Rev. 2012, 41, 3464–3484. (f) Liu, Q.; Jackstell, R.; Belꢀ
ler, M. Angew. Chem., Int. Ed. 2013, 52, 13871–13873. (g) Li, C.ꢀJ.
Acc. Chem. Res. 2009, 42, 335–344.
(2) Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Ripin,
D. H. B. Chem. Rev. 2006, 106, 2943–2989.
(3) (a) He, K.ꢀH.; Li, Y. ChemSusChem 2014, 7, 2788–2790. (b)
Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851–863.
(4) (a) Wang, H.; Wang, L.; Shang, J.; Li, X.; Wang, H.; Gui, J.;
Lei, A.ꢀW. Chem. Commun. 2012, 48, 76–78. (b) Rey, V.; Soriaꢀ
Castro, S. M.; Argüello, J. E.; Peñéñory, A. B. Tetrahedron Lett. 2009,
50, 4720–4723. (c) Cheng, Y.ꢀN.; Yang, J.; Qu, Y.; Li, P.ꢀX. Org.
Lett. 2012, 14, 98–101. (d) Inamoto, K.; Hasegawa, C.; Kawasaki, J.;
Hiroya, K.; Doi, T. Adv. Synth. Catal. 2010, 352, 2643–2655. (e)
Bose, D. S.; Idrees, M., J. Org. Chem. 2006, 71, 8261–8263.
(5) Zhang, G.ꢀT.; Liu, C.; Yi, H.; Meng, Q.ꢀY.; Bian, C.ꢀL.; Chen,
H.; Jian, J.ꢀX.; Wu, L.ꢀZ.; Lei, A.ꢀW. J. Am. Chem. Soc. 2015, 137,
9273–9280.
(6) Thiazolopyridines are usually synthesized from functionalized
aminopyridines: (a) Kokatla, H. P.; Yoo, E.; Salunke, D. B.; Sil, D.;
Ng, C. F.; Balakrishna, R.; Malladi, S. S.; Fox, L. M.; David, S. A.
Org. Biomol. Chem. 2013, 11, 1179–1198. (b) Sorto, N. A.; Olmstead,
M. M.; Shaw, J. T. J. Org. Chem. 2010, 75, 7946–7949.
(17) The siteꢀselectivity for metaꢀsubstituted substrates was probaꢀ
bly controlled by a combination of electronic and steric effects. Cyꢀ
clization on the less sterically hindered site was observed for Pdꢀ
catalysis: Sahoo, S. K.; Banerjee, A.; Chakraborty, S.; Patel, B. K.
ACS Catal. 2012, 2, 544–551.
(18) For comparison, treating 52 (0.53 mmol) with 3 equiv of
−
TEMPO+BF4 under slow addition conditions led to the formation of
53 in 63% yield.
(19) Newcomb, M. In Radicals in Organic Synthesis; Renaud, P.;
Sibi, M. P., Eds.; WileyꢀVCH: Weinheim, 2001; Vol. 1, p 317–336.
(20) Alternative structures linked through Nthioamide–OTEMPO or Sthioꢀ
amide–NTEMPO collapsed to TEMPO and thioamidyl radical II during
DFTꢀbased geometry optimization.
(21) Examples of TEMPOꢀmediated radical formation, see ref.
(11c) and: (a) Voica, A.ꢀF.; Mendoza, A.; Gutekunst, W. R.; Fraga, J.
O.; Baran, P. S. Nat. Chem. 2012, 4, 629–635. (b) Zhang, B.; Studer,
A. Org. Lett. 2013, 15, 4548–4551. (c) Li, Y.; Studer, A. Angew.
Chem., Int. Ed. 2012, 51, 8221–8224. (d) Chen, F.; Yang, X.ꢀL.; Wu,
Z.ꢀW.; Han, B. J. Org. Chem. 2016, 81, 3042–3050. (e) Hu, X.ꢀQ.;
Chen, J.; Chen, J.ꢀR.; Yan, D.ꢀM.; Xiao, W.ꢀJ. Chem. Eur. J. 2016,
22, 14141–14146.
(7) Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889–
900.
(8) Selected recent reviews on electroorganic synthesis: (a) Horn, E.
J.; Rosen, B. R.; Baran, P. S. ACS Cent. Sci. 2016, 2, 302–308. (b)
Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492–2521. (c)
Yoshida, J.ꢀi.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev.
2008, 108, 2265–2299. (d) Sperry, J. B.; Wright, D. L. Chem. Soc.
Rev. 2006, 35, 605–621. (e) FrontanaꢀUribe, B. A.; Little, R. D.;
Ibanez, J. G.; Palma, A.; VasquezꢀMedrano, R. Green Chem. 2010, 12,
2099–2119. (f) Ogawa, K. A.; Boydston, A. J. Chem. Lett. 2014, 44,
10–16. (g) Waldvogel, S. R.; Janza, B. Angew. Chem., Int. Ed. 2014,
53, 7122–7123. (h) Waldvogel, S. R.; Möhle, S. Angew. Chem., Int.
Ed. 2015, 54, 6398–6399. (i) Rusling, J. T.; Fry, A. J. Interface 2016,
15, 59–61.
(22) Examples of dimerization thioamidyl radicals: (a) Lo, W.ꢀS.;
Hu, W.ꢀP.; Lo, H.ꢀP.; Chen, C.ꢀY.; Kao, C.ꢀL.; Vandavasi, J. K.;
ACS Paragon Plus Environment