Journal of the American Chemical Society
Page 4 of 5
1
1
2
3
4
5
6
7
8
Figure 2. Partial H NMR spectra (600 MHz, CD3CN, 298 K)
of a rotaxane assembled by aza-Michael addition. (a) Reac-
tion mixture following assembly of 16. (b) Rotaxane 16.HCl
isolated following acidic workup. (c) 16, formed by deproto-
nation of 16.HCl with 5 eq. DBU. The assignments corre-
spond to the lettering shown in Scheme 3. For full assign-
ment of 16.HCl see Supporting Information.
ty at Swansea University for high resolution mass spectrome-
try, Diamond Light Source for time on the I19 beamline, and
the Xunta de Galicia and European Social Fund for a pre-
doctoral fellowship to BP-S. DAL is a Royal Society Research
Professor.
REFERENCES
Rotaxane 16/16.HCl acts as a stimuli-responsive molecular
(1) Bruns, C. J.; Stoddart, J. F. The Nature of the Mechanical Bond:
From Molecules to Machines; John Wiley & Sons: Hoboken, NJ, 2017.
(2) Rotaxane formation through transition state stabilization is a
metal-free form of active template synthesis: (a) Aucagne, V.; Hänni,
K. D.; Leigh, D. A.; Lusby, P. J.; Walker, D. B. J. Am. Chem. Soc. 2006,
128, 2186−2187. (b) Crowley, J. D.; Goldup, S. M.; Lee, A.-L.; Leigh, D.
A.; McBurney, R. T. Chem. Soc. Rev. 2009, 38, 1530−1541. (c) Denis,
M.; Goldup, S. M. Nat. Rev. Chem. 2017, 1, 61. For recent examples of
active template synthesis, see: (d) Hoekman, S.; Kitching, M. O.;
Leigh, D. A.; Papmeyer, M.; Roke, D. J. Am. Chem. Soc. 2015, 137,
7656−7659. (e) Movsisyan, L. D.; Franz, M.; Hampel, F.; Thompson,
A. L.; Tykwinski, R. R.; Anderson, H. L. J. Am. Chem. Soc. 2016, 138,
1366−1376. (f) Lewis, J. E. M.; Winn, J.; Cera, L.; Goldup, S. M. J. Am.
Chem. Soc. 2016, 138, 16329−16336. (g) Brown, A.; Lang, T.; Mullen, K.
M.; Beer, P. D. Org. Biomol. Chem. 2017, 15, 4587−4594.
(3) Rotaxanes have been formed through complexation-driven effec-
tive molarity increases that accelerate axle-forming reactions within
the cavity. For selected examples, see: (a) Mock, W. L.; Irra, T. A.;
Wepsiec, J. P.; Adhya, M. J. Org. Chem. 1989, 54, 5302−5308. (b) Tun-
cel, D.; Steinke, J. H. G. Chem. Commun. 1999, 1509−1510. (c) Ke, C.;
Strutt, N. L.; Li, H.; Hou, X.; Hartlieb, K. J.; McGonigal, P. R.; Ma, Z.;
Iehl, J.; Stern, C. L.; Cheng, C.; Zhu, Z.; Vermeulen, N. A.; Meade, T.
J.; Botros, Y. Y.; Stoddart, J. F. J. Am. Chem. Soc. 2013, 135, 17019−1703.
A calixarene-based metal-free active template rotaxane-forming
reaction was recently described: (d) Orlandini, G.; Ragazzon, G.;
Zanichelli, V.; Secchi, A.; Silvi, S.; Venturi, M.; Arduini, A.; Credi, A.
Chem. Commun. 2017, 53, 6172−6174.
(4) De Bo, G.; Dolphijn, G.; McTernan, C. T.; Leigh, D. A. J. Am.
Chem. Soc. 2017, 139, 8455–8457.
(5) Hunter, C. A. Angew. Chem. Int. Ed. 2004, 43, 5310–5324.
(6) Buschmann, H.-J.; Wenz, G.; Schollmeyer, E.; Mutihac, L. Ther-
mochim. Acta 1995, 261, 1−5.
(7) Rüdiger; V.; Schneider, H.-J.; Solov’ev, V. P; Kazachenko, V. P;
Raevsky, O. A. Eur. J. Org. Chem. 1999, 1847−1856.
(8) Cram, D. J.; Cram, J. M. Acc. Chem. Res. 1978, 11, 8−14.
(9) Ashton, P. R.; Baxter, I.; Fyfe, M. C. T.; Raymo, F. M.; Spencer, N.;
Stoddart, J. F.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1998,
120, 2297–2307.
(10) In the N-alkylation reaction, stabilizing CH-O interactions in the
transition state could involve the -NCH2- group originating from the
electrophile (as depicted in Scheme 1) and/or the nucleophile. In the
N-acylation and aza-Michael addition reactions the only -NCH-
protons are derived from the nucleophile (as depicted in Schemes 2
and 3). Other stabilizing interactions of partial charge in the transi-
tion states are likely also involved.
shuttle (Supplementary Information, Section 6).1 In the am-
9
1
monium form (16.HCl) the H NMR spectrum in CD3CN
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
shows that the macrocycle binds to the ammonium group of
the thread (H2 δ4.5; H1 δ7.5; Figure 2b). In amine 16 the ring
resides primarily on the axle amide group (H2 δ3.8; H1 δ7.25;
Figure 2c). Switching between 16.HCl and 16 is achieved in
one direction with 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU)
(16.HCl to 16) and in the other by addition of HCl (16 to
16.HCl).
In conclusion, crown-ether-dialkylammonium rotaxanes,
one of the most extensively studied rotaxane systems,1,15 can
be assembled directly from primary amines and alkyl or ben-
zyl halides (or other leaving groups). The approach circum-
vents the classic two-step clipping and capping strategies
used for rotaxane synthesis, and negates the need for addi-
tional reagents or the incorporation into the rotaxane design
of additional functionality for covalent capture. Rotaxane
formation is accomplished by transition state stabilization of
the axle-forming reaction by the macrocycle, a form of metal-
free active template2 synthesis. Other electrophiles can also
be used, demonstrating that different transition states can be
stabilized, leading to amide (through N-acylation) or 3-
aminopropanamide (through aza-Michael addition) rotax-
anes. Rotaxane formation by aza-Michael addition leads di-
rectly to pH-switchable molecular shuttles; N-acylation of
amino acids generates crown-ether-peptide rotaxanes. The
rotaxane yields in these first generation systems range from
modest-to-good (25-73 %) and, although in some cases ini-
tially rapid, require relatively long reaction times to go to
completion (typically >2 days). Both should improve with
macrocycle and leaving group designs specifically tailored4 to
suit the axle-forming reaction.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: xxxxxxxx. Detailed descrip-
tions of synthetic procedures; characterization of new com-
pounds; spectroscopic data (PDF).
(11) Ashton, P. R.; Bartsch, R. A.; Cantrill, S. J.; Hanes, R. E., Jr.; Hick-
ingbottom, S. K.; Lowe, J. N.; Preece, J. A.; Stoddart, J. F.; Talanov, V.
S.; Wang, Z.-H. Tetrahedron Lett. 1999, 40, 3661−3664.
AUTHOR INFORMATION
Corresponding Author
(12) (a) Hogan, J. C.; Gandour, R. D. J. Org. Chem. 1992, 57, 55−61. (b)
Basilio, N.; García-Río, L.; Mejuto, J. C.; Pérez-Lorenzo, M. J. Org.
Chem. 2006, 71, 4280−4285. (c) Hirose, K.; Nishihara, K.; Harada, N.;
Nakamura, Y.; Masuda, D.; Araki, M.; Tobe, Y. Org. Lett. 2007, 9,
2969−2972. (d) Hiratoni, K.; Suga, J.-i.; Nagawa, Y.; Houjou, H.; To-
kuhisa, H.; Numatab, M.; Watanabe, K. Tetrahedron Lett. 2002, 43,
5747–5750. (e) Kameta, N.; Hiratani, K.; Nagawa, Y. Chem. Commun.
2004, 466–467.
(13) Brayro, M. J.; Mukhopadhyay, J.; Swapna, G. V. T.; Huang, J. Y.;
Ma, L.-C.; Sineva, E.; Dawson, P. E.; Montelione, G. T.; Ebright, R. H.
J. Am. Chem. Soc. 2003, 125, 12382−12383.
(14) For rotaxanes with peptide macrocycles threaded onto an am-
monium axle by a standard ‘capping’ protocol, see: Aucagne, V.;
*david.leigh@manchester.ac.uk
ACKNOWLEDGMENT
This research was funded by the Engineering and Physical
Sciences Research Council (EP/P027067/1). We thank Dr
Simon Halstead for preliminary modeling studies on the
mechanism of rotaxane formation and Dr George Whitehead
for assistance with the X-ray crystallographic analysis. We
are grateful to the EPSRC National Mass Spectrometry Facili-
ACS Paragon Plus Environment