(2-thio)uridines Modified with Blocked Glycine/Taurine
615
9. Schaffer, S.W.; Jong, Ch.J.; Ito, T.; Azuma, J. Role of taurine in the pathologies of MELAS and
MERRF. Amino Acids 2012, 1414–1418.
10. Kurschat, W.C.; Muller, J.; Wombacher, R.; Helm, M. Optimizing splinted ligation of highly structured
small RNAs. RNA 2005, 11, 1909–1914.
11. Ogata, T.; Wada, T. Chemical synthesis of RNA including 5-taurinomethyluridine. Nucl. Acids Symp.
Ser. 2006, 50, 9–10.
12. Ogata, T.; Wada, T. Chemical synthesis of RNA including 5-taurinomethyluridine and 5-
taurinomethyl-2-thiouridine. Nucl. Acids Symp. Ser. 2008, 52, 323–324.
13. Małkiewicz, A.; Sochacka, E. The chemical synthesis of the tRNA anticodons with 5-
carboxymethylaminomethyluridine and its 2-thioanalogue as the components, in Biophosphates and
Their Analogues – Synthesis, Structure, Metabolism and Activity, eds. K.S. Bruzik; W.J. Stec, Elsevier Science
Publishers, Amsterdam, B.V. 1987, pp. 205–210.
14. (a) Catalanotti, B.; Galcone, A.; Mayol, L.; Oliviero, G.; Rigano, D.; Varra, N. Synthesis of 5-
methylamino-2ꢁ-deoxyuridine derivatives. Nucleosides Nucleotides Nucleic Acids 2001, 20, 1831–1841.
b) Sochacka, E.; Smuga, D. Novel enamine derivatives of 5,6-dihydro-2ꢁ-deoxyuridine formed in re-
ductive amination of 5-formyl-2ꢁ-deoxyuridine. Nucleosides Nucleot. Nucleic Acids 2008, 27, 1045–1060.
c) Taranenko, M.; Mitchedlidze, M.; Sumbatyan, N.; Korshunova, G.A. Zero-Length diazirine pho-
toactive nucleoside. Nucleos. Nucleot. Nucleic Acids 2003, 22, 715–717. d) Godzina, P.; Markiewicz, W.T.
Synthetic oligonucleotide combinatorial libraries. Synthesis of 5-polyaminomethyl-2ꢁ-deoxyuridines.
Collect. Czech. Chem. Commun. Symp. Ser. 1999, 2, 79–82.
15. (a) Zatsepin, T.K.; Stetsenko, D.A.; Gait, M.J.; Oretskaya, T.S. Use of carbonyl group addition-
elimination reactions for synthesis of nucleic acid conjugates. Bioconjugate Chem. 2005, 16, 471–489.
b) Raindlova, V.; Pohl, R.; Hocek, M. Synthesis of aldehyde-linked nucleotides and DNA and their bio-
conjugations with lysine and peptides through reductive amination. Chem. Eur. J. 2012, 18, 4080–4087.
c) Sugiyama, T; Kittaka, A; Takayama, H; Kuroda, R. Evidence for a Schiff base formation of peptides
derived from RecA with single-stranded oligonucleotides containing 5-formyl-2ꢁ-deoxyuridine. Nucleic
Acids Res. Suppl. 2001, 1, 175–176. d) Fujishima, T.; Kojima, Y.; Azumaya, I.; Kittaka, A. Takayama, H.
Design and synthesis of potent vitamin D receptor antagonists with A-ring modifications: remarkable
effects of 2alpha-methyl introduction on antagonistic activity. Bioorg. Med. Chem. 2003, 11, 3621–3631.
16. Malkiewicz, A.; Sochacka, E.; Ahmed, A.F.S.; Yassin, S. The modified nucleosides from the
“wobble position” of tRNAs. The synthesis of 5-carboxymethylaminomethyluridine and 5-
carboxymethylaminomethyl-2-thiouridine. Tetrahedron Lett. 1983, 24, 5395–5398
17. Reese, C.B.; Sanghvi, Y.S. The synthesis of 5-carboxymethylaminomethyluridine and 5-
carboxymethylaminomethyl-2-thiouridine. J. Chem. Soc. Chem. Commun 1984, 1, 62–63.
18. (a) Sundaram, M.; Crain, P.F.; Davis, D.R. Synthesis and characterization of the native anticodon
domain of E. coli tRNALys: simultaneous incorporation of modified nucleosides mnm5s2U, t6A, and
pseudouridine using phosphoramidite chemistry. J. Org. Chem. 2000, 65, 5609–5614. b) Bajji, A.C.;
Sundaram, M.; Myszka, D.G.; Davis, D.R. An RNA complex of the HIV-1 A-loop and tRNALys,3 is
stabilized by nucleoside modifications. J. Am. Chem. Soc. 2002, 124, 14302–14303. c) Eshete, M.;
Marchbank, M.T.; Deutscher, S.L.; Sproat, B.; Leszczynska, G.; Malkiewicz, A.; Agris, P.F. Specificity
of phage display selected peptides for modified anticodon stem and loop domains of tRNA. Protein
J. 2007, 26, 61–73. d) Bajji, A.C.; Davis, D.R. Synthesis of the tRNALys,3 anticodon stem-loop domain
containing the hipermodified ms2t6A nucleoside. J. Org. Chem. 2002, 67, 5352–5358.
19. de Bont, D.B.A.; Dijkstra, G.D.H.; den Hartog, J.A.J.; Liskamp, R.M.J. Solid-phase synthesis of pep-
tidosulfonamide containing peptides derived from Leu-enkephalin. Bioorg. Med. Chem. Lett. 1996, 6,
3035–3040.
20. Gennari, C.; Gude, M.; Potenza, D.; Piarulli, U. Chem. Eur. J. Hydrogen-bonding donor/akceptor
scales in β-sulfonamidopeptides. 1998, 4, 1924–1931.
21. Truce, W.E.; Vrencur, D.J. Hydrogen-bonding donor/acceptor scales in β-sulfonamidopeptides. J.
Org. Chem. 1970, 35, 1226–1227.
22. Rodriguez, A.; Nomen, M.; Spur, B.W.; Godfroid, J.J. A selective method for the preparation of
aliphatic methyl esters in the presence of aromatic carboxylic acids. Tetrahedron Lett. 1998, 39,
8563–8566
23. Saeed, A.; Ashraf, Z. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters.
J. Chem. Sci. 2006, 118, 419–423.