aromatic acids via a Curtius rearrangement, presumably
through the formation of the corresponding azidoformate (eq
1). The use of a chloroformate containing a less nucleophilic
Table 1. Curtius Rearrangement of Benzoic Acid:
Optimization of the Reaction Conditions (Equation 3)a
entry
reaction conditions
conversion (%)b
1
2
3
4
5
6
7
8
Bu4NBr, Zn(OTf)2/THF c
Bu4NBr, Zn(OTf)2/THF
<5
15
10
20
15
15e
20e
>95e
alkoxy moiety allowed the use of external nucleophiles, such
as amines, thus leading to the formation of aromatic ureas.
We have recently reported a mild and efficient one-pot
Curtius rearrangement for the synthesis of aliphatic Boc-
protected amines.13 Aliphatic carboxylic acids were reacted
with a mixture of di-tert-butyl dicarbonate and sodium azide
to form an acyl azide intermediate, which underwent a
Curtius rearrangement at 40-50 °C (eq 2).
Bu4NBr, pyridine,d Zn(OTf)2/THF
Bu4NBr, HOBT,d Zn(OTf)2/THF
no additive or catalyst/THF
no additive or catalyst/toluene
no additive or catalyst/MeCN
no additive or catalyst/DME
a Conditions: Boc2O (1.1 equiv), NaN3 (3.5 equiv), additive (15 mol
%), catalyst (3.3 mol %), solvent, 16 h. b Conversion by GC-MS. c 40 °C.
d Pyridine or HOBT (1.1 equiv). e NaN3 (1.5 equiv).
stable than their aliphatic counterparts. The reaction was thus
heated at 75 °C to promote the rearrangement. Although
carbamate 1 was produced under these reaction conditions,
only 15% conversion was observed (entry 2). Neither the
addition of pyridine nor the addition of 1-hydroxybenzo-
triazole (HOBT) increased the yield of carbamate 1 (entries
3 and 4). Indeed, the reaction proceeded to the same extent
in the absence of catalyst (entry 5). Finally, solvent optimiza-
tion led to high conversion when the reaction was run in
1,2-dimethoxyethane (DME) (entry 8). This observation
suggested that the solubility of the various species and
intermediates is crucial for the reaction to occur.14
The trapping of the isocyanate derivative in the presence
of tetrabutylammonium bromide and zinc(II) triflate led to
the desired tert-butyl carbamate in high yields. In sharp
contrast, using similar reaction conditions, aromatic car-
boxylic acids led mainly to the formation of the correspond-
ing tert-butyl ester, presumably via the displacement of an
azide leaving group with tert-butoxide (Table 1, entry 1).
We postulated that the Curtius rearrangement did not take
place at 40 °C, as aromatic acyl azides are known to be more
The Boc-aniline 1 was isolated in 79% yield after 20 h of
reaction (Table 2, entry 1). Other unfunctionalized anilines
(10) Selected examples: (a) Romine, J. L.; Martin, S. W.; Meanwell,
N. A.; Epperson, J. R. Synthesis 1994, 846-850. (b) Proctor, G. R.; Harvey,
A. L. Curr. Med. Chem. 2000, 7, 295-302. (c) Alonso-Alija, C.; Michels,
M.; Peilstocker, K.; Schirok, H. Tetrahedron Lett. 2004, 45, 95-98. (d)
Dombroski, M. A.; Letavic, M. A.; McClure, K. F.; Barberia, J. T.; Carty,
T. J.; Cortina, S. R.; Csiki, C.; Dipesa, A. J.; Elliott, N. C.; Gabel, C. A.;
Jordan, C. K.; Labasi, J. M.; Martin, W. H.; Peese, K. M.; Stock, I. A.;
Svensson, L.; Sweeney, F. J.; Yu, C. H. Bioorg. Med. Chem. Lett. 2004,
14, 919-923. (e) Gopalsamy, A.; Lim, K.; Ellingboe, J. W.; Mitsner, B.;
Nikitenko, A.; Upeslacis, J.; Mansour, T. S.; Olson, M. W.; Bebernitz, G.
A.; Grinberg, D.; Feld, B.; Moy, F. J.; O’Connell, J. J. Med. Chem. 2004,
47, 1893-1899. (f) Ple, P. A.; Green, T. P.; Hennequin, L. F.; Curwen, J.;
Fennell, M.; Allen, J.; Lambert-van der Brempt, C.; Costello, G. J. Med.
Chem. 2004, 47, 871-887. (g) Sit, S. Y.; Xie, K.; Jacutin-Porte, S.; Boy,
K. M.; Seanz, J.; Taber, M. T.; Gulwadi, A. G.; Korpinen, C. D.; Burris,
K. D.; Molski, T. F.; Ryan, E.; Xu, C.; Verdoorn, T.; Johnson, G.; Nichols,
D. E.; Mailman, R. B. Bioorg. Med. Chem. 2004, 12, 715-734. (h)
Takigawa, Y.; Ito, H.; Omodera, K.; Ito, M.; Taguchi, T. Tetrahedron 2004,
60, 1385-1392. (i) Dominguez, J. N.; Leon, C.; Rodrigues, J.; de
Dominguez, N. G.; Gut, J.; Rosenthal, P. J. J. Med. Chem. 2005, 48, 3654-
3658. (j) Opacic, N.; Barbaric, M.; Zorc, B.; Cetina, M.; Nagy, A.; Frkovic,
D.; Kralj, M.; Pavelic, K.; Balzarini, J.; Andrei, G.; Snoeck, R.; De Clercq,
E.; Raic-Malic, S.; Mintas, M. J. Med. Chem. 2005, 48, 475-482. (k)
Suzuki, T.; Nagano, Y.; Kouketsu, A.; Matsuura, A.; Maruyama, S.;
Kurotaki, M.; Nakagawa, H.; Miyata, N. J. Med. Chem. 2005, 48, 1019-
1032. (l) Varaprasad, C.; Johnson, F. Tetrahedron Lett. 2005, 46, 2163-
2165.
Table 2. tert-Butylazidoformate in the Curtius Rearrangement
of Benzoic Acids (Equation 4)a
(11) (a) Shioiri, T.; Ninomiya, K.; Yamada, S. J. Am. Chem. Soc. 1972,
94, 6203-6205. (b) Ninomiya, K.; Shioiri, T.; Yamada, S. Tetrahedron
1974, 30, 2151-2157. (c) Murato, K.; Shioiri, T.; Yamada, S. Chem. Pharm.
Bull. 1975, 23, 1738-1740. (d) Capson, T. L.; Poulter, C. D. Tetrahedron
Lett. 1984, 25, 3515-3518. (e) Wolff, O.; Waldvogel, S. R. Synthesis 2004,
1303-1305. (f) Sawada, D.; Sasayama, S.; Takahashi, H.; Ikegami, S.
Tetrahedron Lett. 2006, 47, 7219-7223.
a Conditions: Boc2O (1.1 equiv), NaN3 (1.5 equiv), 20 h. b Isolated yield.
were isolated with similar yields (entries 2 and 3). However,
functional groups such as methyl ether, thiomethyl ether,
5718
Org. Lett., Vol. 8, No. 25, 2006