ORGANIC
LETTERS
2013
Vol. 15, No. 24
6170–6173
Steric Parameters in the Ir-Catalyzed
Regio- and Diastereoselective
Isomerization of Primary Allylic Alcohols
ꢀ
Houhua Li and Clement Mazet*
University of Geneva, Department of Organic Chemistry, 30 quai Ernest Ansermet,
1211 Geneva-4, Switzerland
Received October 21, 2013
ABSTRACT
The iridium-catalyzed diastereo- and regioselective isomerization of primary allylic alcohols using Crabtree’s catalyst or sterically modified
analogs is reported. The importance of the size of the substituents on either the substrates or the catalysts has been rationalized by linear free
energy relationships.
The systematic evaluation of the influence of electronic
and steric parameters in the outcome of selective catalytic
transformations is of prime importance, as it permits
rationales and predictive models to be elaborated. Since
the emergence of asymmetric catalysis in the late 1960s,
such exercises have been regularly practiced.1 Interestingly
the main focus has been placed on enantioselective cata-
lysis rather than diastereoselective catalysis.2 Similarly, the
quantification of electronic rather than steric parameters
has often been favored. Recently, Sigman and co-workers
have demonstrated that Charton and Sterimol parameters
could be appropriately used in the context of enantiose-
lective catalysis.3,4 They convincingly established that the
log of the enantiomeric ratio (er) of various asymmetric
transformations can be correlated with descriptors of the
size of the substituents of either the chiral ligands or the
substrates. Noticeably, examples of such analysis for
diastereoselective transformations are less common.5
As part of our program on the iridium-catalyzed en-
antioselective isomerization of primary allylic alcohols,6À8
we have shown that excellent Linear Free Energy
€
(5) (a) Adam, W.; Mitchell, C. M.; Saha-Moller, C. R. Eur. J. Org.
€
€
Chem. 1999, 785. (b) Meynhardt, B.; Luning, U.; Wolff, C.; Nather, C.
Eur. J. Org. Chem. 1999, 2327. (c) You, L.; Berman, J. S.;
Lucknasawichien, A.; Anslyn, E. V. J. Am. Chem. Soc. 2012, 134, 7126.
(6) For recent reviews, see: van der Drift, R. C.; Bouwman, E.; Drent,
ꢀ
ꢀ
E. J. Organomet. Chem. 2002, 650, 1. (b) Uma, R.; Crevisy, C.; Gree, R.
Chem. Rev. 2003, 103, 27. (c) Fu, G. C.; Modern Rhodium-Catalyzed
Organic Reactions; Evans, P. A., Ed.; WileyÀVCH: Weinheim, 2005;
Chapter 4. (d) Cadierno, V.; Crochet, P.; Gimeno, J. Synlett 2008, 1105.
(e) Mantilli, L.; Mazet, C. Chem. Lett. 2011, 40, 341. (f) Ahlsten, N.;
Bartoszewicz, A.; Martin-Matute, B. Dalton Trans. 2012, 41, 1660.
(7) For contributions from our group, see: (a) Mantilli, L.; Mazet, C.
(1) (a) Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz,
A., Yamamoto, I., Eds.; Springer: Berlin, 1999. (b) Fundamentals of
Asymmetric Catalysis; Kozlowski, M. C., Walsh, P. J., Eds.; University
Science Books: Sausalito, CA, 2009. (c) Modern Physical Organic Chem-
istry; Anslyn, E. V., Dougherty, D. A., Eds.; University Science Books: Mill
Valley, CA, 2006. (c) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91,
165. (d) Bunten, K. A.; Chen, L.; Fernandez, A. L.; Poe, A. J. Coord.
Chem. Rev. 2002, 233À234, 41.
ꢀ
Tetrahedron Lett. 2009, 50, 4141. (b) Mantilli, L.; Gerard, D.; Torche, S.;
Besnard, C.; Mazet, C. Angew. Chem., Int. Ed. 2009, 48, 5143. (c)
Mantilli, L.; Mazet, C. Chem. Commun. 2010, 46, 445. (d) Mantilli, L.;
ꢀ
Gerard, D.; Torche, S.; Besnard, C.; Mazet, C. Chem.;Eur. J. 2010, 16,
12736. (e) Quintard, A.; Alexakis, A.; Mazet, C. Angew. Chem., Int. Ed.
(2) Mahatthananchai, J.; Dumas, A. M.; Bode, J. W. Angew. Chem.,
Int. Ed. 2012, 51, 10954.
ꢀ
2011, 50, 2354. (f) Mantilli, L.; Gerard, D.; Besnard, C.; Mazet, C. Eur.
(3) (a) Miller, J. J.; Sigman, M. S. Angew. Chem., Int. Ed. 2008, 47,
771. (b) Sigman, M. S.; Miller, J. J. J. Org. Chem. 2009, 74, 7633. (c)
Harper, K. C.; Sigman, M. S. Proc. Natl. Acad. Sci. U.S.A. 2011, 108,
2179. (d) Harper, K. C.; Sigman, M. S. Science 2011, 333, 1875. (e)
Harper, K. C.; Bess, E. N.; Sigman, M. S. Nat. Chem. 2012, 4, 366. (f)
Harper, K. C.; Vilardi, S. C.; Sigman, M. S. J. Am. Chem. Soc. 2013, 135,
2482.
J. Inorg. Chem. 2012, 20, 3320.
(8) For other examples of enantioselective isomerization of primary
allylic alcohols, see: (a) Botteghi, C.; Giacomelli, G. Gazz. Chim. Ital.
1976, 106, 1131. (b) Tanaka, K.; Qiao, S.; Tobisu, M.; Lo, M. M.-C.; Fu,
G. C. J. Am. Chem. Soc. 2000, 122, 9870. (c) Tanaka, K.; Fu, G. C.
J. Org. Chem. 2001, 66, 8177. (d) Chapuis, C.; Barthe, M.; de Saint
Laumer, J.-Y. Helv. Chim. Acta 2001, 84, 230. (e) Li, J.-Q.; Peters, B.;
Andersson, P. G. Chem.;Eur. J. 2011, 17, 11143. (f) Arai, N.; Sato, K.;
Azuma, K.; Ohkuma, T. Angew. Chem., Int. Ed. 2013, 52, 7500.
(4) (a) Wu, J. H.; Zhang, G.; Porter, N. A. Tetrahedron Lett. 1997, 38,
2067. (b) Quintard, A.; Alexakis, A. Org. Biomol. Chem. 2011, 9, 1407.
r
10.1021/ol403023x
Published on Web 11/12/2013
2013 American Chemical Society