4
Tetrahedron
12. Possibility that 4a was 3,3-dimethyl-2-tetralone was ruled out
since its spectral data were different: Henrion, G.; Chavas, T. E.
J.; Le Goff, X.; Gagosz, F. Angew. Chem., Int. Ed. 2013, 52, 6277.
13. It has been reported that cyclization of 7a with AlCl3 gave 4a in
78% yield: Colonge, J.; Chambion, J. Bull. Soc. Chim. Fr. 1947,
1002.
HO
O
HO
HO
Ar
HO
H
=
Ar
Ar
Ar
Ar
O
1
8
9
10
Ar = 4-X-C6H4
14. In addition, 2-tetralones 4 were not detected in the aforementioned
formal [4+4] cycloaddition of cyclobutanones 1 with anthracene
when TiCl4 was used as a Lewis acid (Tables 1 and 2).
15. Saunders, M.; Laidig, K. E.; Wiberg, K. B.; Schleyer, P. v. R. J.
Am. Chem. Soc. 1988, 110, 7652.
HO
Ar
HO
Ar
O
X
X
16. It was thought that compound 6k was formed via an intermediate
9 and compound 7l was formed via 12 or 13.
11
12
13
4
Scheme 6. Proposed reaction mechanism from 1 to 4
In conclusion, we have developed two reactions of 3-
arylcyclobutanones: (1) TiCl4-catalyzed formal [4+4]
cycloaddition with anthracene and (2) TfOH-promoted
cycloisomerization to 2-tetralones with skeletal rearrangement.
These two reactions will broaden the synthetic utility of 3-
arylcyclobutanones.
Supplementary Material
Supplementary data associated this article can be found in the
online version at_.
• Lewis acid-catalyzed formal [4+4] cycloaddition
of 3-arylcyclobutanones and anthracene.
• TfOH-mediated cycloisomerization of 3-
arylcyclobutanones to 2-tetralones with skeletal
rearrangement.
Acknowledgments
This work was supported by Kanazawa University
SAKIGAKE project.
• A proposed reaction mechanism for the
cycloisomerization.
References and notes
1.
(a) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Angew. Chem.,
Int. Ed. 2011, 50, 7740. (b) Namyslo, J. C.; Kaufmann, D. E.
Chem. Rev. 2003, 103, 1485. (c) Lee-Ruff, E.; Mladenova, G.
Chem. Rev. 2003, 103, 1449. (d) Bellus, D.; Ernst, B. Angew.
Chem., Int. Ed. Engl. 1988, 27, 797. (e) Conia, J. M.; Robson, M.
J. Angew. Chem., Int. Ed. Engl. 1975, 14, 473. (f) Matsuo, J.
Tetrahedron Lett. 2014, 55, 2589.
2.
3.
Kanie, M.; Yoshimura, T.; Matsuo, J. Synthesis 2018, 50, 548.
Igarashi, E.; Sakamoto, K.; Yoshimura, T.; Matsuo, J.
Tetrahedron Lett. 2019, 60, 13.
4.
(a) Bouas-Laurent, H.; Desvergne, J.-P.; Castellan, A.;
Lapouyade, R. Chem. Soc. Rev. 2000, 29, 43. (b) Bouas-Laurent,
H.; Desvergne, J.-P.; Castellan, A.; Lapouyade, R. Chem. Soc.
Rev. 2001, 30, 248. (c) Maturi, M. M.; Fukuhara, G.; Tanaka, K.;
Kawanami, Y.; Mori, T.; Inoue, Y.; Bach, T. Chem. Commun.
2016, 52, 1032, and references are cited therein.
5.
(a) Yang, N. C.; Libman, J. J. Am. Chem. Soc. 1972, 94, 1405. (b)
Yang, N. C.; Srinivasachar, K.; Kim, B.; Libman, J. J. Am. Chem.
Soc. 1975, 97, 5006. (c) Kaupp, G. Justus Liebigs Ann. Chem.
1977, 254. (d) Kaupp, G.; Grueter, H. W. Chem. Ber. 1980, 113,
1458. (e) Kaupp, G.; Teufel, E. Chem. Ber. 1980, 113, 3669.
Woodward, R. B.; Hoffmann, R. "The Conservation of Orbital
Symmetry" Academic Press, New York, N. Y., 1971.
Formal [4+3] cycloaddition was reported: Ivanova, O. A.;
Budynina, E. M.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P.
V. Eur. J. Org. Chem. 2008, 5329.
6.
7.
8.
(a) Huisgen, R.; Feiler, L. A.; Otto, P. Chem. Ber. 1969, 102,
3405. (b) Abegg, V. P.; Hopkinson, A. C.; Lee-Ruff, E. Can. J.
Chem. 1978, 56, 99. (c) Dao, L. H.; Hopkinson, A. C.; Lee-Ruff,
E. Tetrahedron Lett. 1978, 1413. (d) Feiler, L. A.; Huisgen, R.
Chem. Ber. 1969, 102, 3428. (e) Duperrouzel, P.; Lee-Ruff, E.
Can. J. Chem. 1980, 58, 51. (f) Abegg, V. P.; Hopkinson, A. C.;
Lee-Ruff, E. Can. J. Chem. 1978, 56, 99.
9.
CCDC1900307 (compound 3a) and CCDC 1936724 (compound
3h) contain the supplementary crystallographic data for this paper.
The data can be obtained free of charge from The Cambridge
10. The similar regioselectivity was observed: ref 7 and Perin, F.;
Croisy-Delcey, M.; Jacquignon, P. Can. J. Chem. 1976, 54, 1777.
11. Silveira, C. C.; Braga, A. L.; Kaufman, T. S.; Lenardão, E. J.
Tetrahedron 2004, 60, 8295.