Journal of the American Chemical Society
Communication
K. B. J. Am. Chem. Soc. 1991, 113, 106. (c) Seebach, D.; Plattner, D. A.;
Beck, A. K.; Wang, Y. M.; Hunziker, D.; Petter, W. Helv. Chim. Acta
AUTHOR INFORMATION
Corresponding Author
■
́
1992, 75, 2171. (d) Ramon, D. J.; Yus, M. Chem. Rev. 2006, 106, 2126.
(10) The pseudomicroscopic reverse, a Ti-catalyzed bromination of
β-ketoesters in 23% ee, has been reported. See: Hintermann, L.;
Togni, A. Helv. Chim. Acta 2000, 83, 2425.
Notes
The authors declare no competing financial interest.
(11) Seebach, D.; Beck, A. K.; Heckel, A. Angew. Chem., Int. Ed. 2001,
40, 92.
(12) See the Supporting Information for details.
ACKNOWLEDGMENTS
■
This work was supported by Stanford University and the NSF
(GRF to D.X.H., DGE-114747). We are grateful to Professors
Du Bois, Trost, Stack, and Kanan for helpful discussions and
Dr. Diego Solis-Ibarra and the Karunadasa group for X-ray
crystallographic analysis.
(13) Values from: Gutmann, V. Coord. Chem. Rev. 1976, 18, 225.
(14) Complex 10 is thought to be one of two potentially reactive
diastereomeric titanium species; no nonlinear effect was observed. See
the Supporting Information for details.
(15) (a) Haase, C.; Sarko, C. R.; DiMare, M. J. Org. Chem. 1995, 60,
1777. (b) For a related Ti−TADDOL-catalyzed iodocarbocyclization
of alkenyl malonates, see: Inoue, T.; Kitagawa, O.; Saito, A.; Taguchi,
T. J. Org. Chem. 1997, 62, 7384 and references therein. (c) Bertogg, A.;
Hintermann, L.; Huber, D. P.; Perseghini, M.; Sanna, M.; Togni, A.
Helv. Chim. Acta 2012, 95, 353.
REFERENCES
■
(1) For leading reviews of selective halofunctionalization reactions,
see: (a) Denmark, S. E.; Kuester, W. E.; Burk, M. T. Angew. Chem., Int.
Ed. 2012, 51, 10938. (b) Hennecke, U. Chem.Asian J. 2012, 7, 456.
(c) Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Synlett 2011, 1335. (d) Snyder,
S. A.; Treitler, D. S.; Brucks, A. P. Aldrichimica Acta 2011, 44, 27.
(e) Smith, A. M. R.; Hii, K. K. Chem. Rev. 2011, 111, 1637. For
selected recent examples of catalytic enantioselective intramolecular
bromofunctionalizations, see: (f) Zhao, Y.; Jiang, X.; Yeung, Y.-Y.
Angew. Chem., Int. Ed. 2013, 52, 8597. (g) Wilking, M.; Muck-
̈
Lichtenfeld, C.; Daniliuc, C. G.; Hennecke, U. J. Am. Chem. Soc. 2013,
135, 8133. (h) Huang, D.; Liu, X.; Li, L.; Cai, Y.; Liu, W.; Shi, Y. J. Am.
Chem. Soc. 2013, 135, 8101. (i) Chen, F.; Tan, C. K.; Yeung, Y.-Y. J.
Am. Chem. Soc. 2013, 135, 1232. (j) Wang, Y.-M.; Wu, J.; Hoong, C.;
Rauniyar, V.; Toste, F. D. J. Am. Chem. Soc. 2012, 134, 12928.
(k) Paull, D. H.; Fang, C.; Donald, J. R.; Pansick, A. D.; Martin, S. F. J.
Am. Chem. Soc. 2012, 134, 11128. (l) Denmark, S. E.; Burk, M. T. Org.
Lett. 2012, 14, 256. For a recent intermolecular example, see:
(m) Zhang, W.; Liu, N.; Schienebeck, C. M.; Zhou, X.; Izhar, I. I.;
Guzei, I. A.; Tang, W. Chem. Sci. 2013, 4, 2652.
(2) (a) For catalytic enantioselective dichlorination of allylic
alcohols, see: Nicolaou, K. C.; Simmons, N. L.; Ying, Y.; Heretsch, P.
M.; Chen, J. S. J. Am. Chem. Soc. 2011, 133, 8134. (b) For the sole
report of a catalytic asymmetric alkene dibromination, see: El-Qisairi,
A. K.; Qaseer, H. A.; Katsigras, G.; Lorenzi, P.; Trivedi, U.; Tracz, S.;
Hartman, A.; Miller, J. A.; Henry, P. M. Org. Lett. 2003, 5, 439.
(3) Denmark, S. E.; Burk, M. T.; Hoover, A. J. J. Am. Chem. Soc.
2010, 132, 1232.
(4) (a) The enthalpy of activation for this bromonium transfer
process was measured to be 1.8 kcal/mol. See: Bennetaaa, A. J.;
Brown, R. S.; McClung, R. E. D.; Klobukowski, M.; Aarts, G. H. M.;
Santarsiero, B. D.; Bellucci, G.; Bianchini, R. J. Am. Chem. Soc. 1991,
113, 8532. (b) An enriched bromonium has been generated and
trapped enantiospecifically in the presence of 1-methylcyclohexene.
See: Braddock, D. C.; Marklew, J. S.; Thomas, A. J. F. Chem. Commun.
2011, 9051.
(5) (a) Trost, B. M.; Melvin, L. S. J. Am. Chem. Soc. 1976, 98, 1204.
(b) Diethyl dibromomalonate was later employed in an ester enolate
α-bromination. See: van der Wolf, L.; Pabon, H. J. J. Recl. Trav. Chim.
Pays-Bas 1977, 96, 72. (c) Coumbarides, G. S.; Dingjan, M.; Eames, J.;
Weerasooriya, N. Bull. Chem. Soc. Jpn. 2001, 74, 179.
(6) Zhang, Y.; Shibatomi, K.; Yamamoto, H. J. Am. Chem. Soc. 2004,
126, 15038.
(7) (a) Diethyl dibromomalonate has been used as a source of
́
bromine radical. See: Schuch, D.; Fries, P.; Donges, M.; Perez, B. M.;
̈
Hartung, J. J. Am. Chem. Soc. 2009, 131, 12918. (b) Heating
cyclohexene in the presence of dimethyl dibromomalonate and
methanol yields an 11% yield of 1-bromo-2-methoxycyclohexane.
See: Schmidt, E.; Ascherl, A.; von Knilling, W. Ber. Dtsch. Chem. Ges.
1926, 59, 1876.
(8) Sabat, M.; Gross, M. F.; Finn, M. G. Organometallics 1992, 11,
745.
(9) (a) Berrisford, D. J.; Bolm, C.; Sharpless, K. B. Angew. Chem., Int.
Ed. Engl. 1995, 34, 1059. (b) Woodard, S. S.; Finn, M. G.; Sharpless,
D
dx.doi.org/10.1021/ja4083182 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX