Table 2 Conversion degree of Cu3(NH2btc)2 to Cu3(NHCOCH3btc)2
depending on the acetic anhydride (Ac2O) concentration and the
resulting BET surface areas of Cu3(NHCOCH3btc)2
as NONOate and via physisorption at the ‘‘open’’ metal sites.
The preparations for NO adsorption, storage and release
experiments are in process.
This work was supported by the Deutsche Forschungsge-
meinschaft (DFG: Fr 1372/18-2) as part of the priority
program 1362 (Porous metal–organic frameworks). We thank
Matthias Rogaczewski for support in the laboratory.
NH2 : Ac2O
Conversiona (%)
SBET (m2 gÀ1
)
1 : 1
1 : 2
1 : 4
1 : 6
1 : 8
1 : 10
1 : 15
1 : 20
14
26
42
55
66
73
87
92
1149
1137
1124
943
481
640
—
Notes and references
1 (a) G. Ferey, Chem. Soc. Rev., 2008, 37, 191; (b) S. Kitagawa,
´
—
R. Kitaura and S. Noro, Angew. Chem., Int. Ed., 2004, 43, 2334;
(c) J. L. C. Rowsell and O. M. Yaghi, Microporous Mesoporous
Mater., 2004, 73, 3.
a
The percent conversion values are the arithmetic average of three
independent experiments.
2 M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe
and O. M. Yaghi, Science, 2002, 295, 469.
3 K. K. Tanabe and S. M. Cohen, Chem. Soc. Rev., 2011, 40, 498.
4 (a) R. E. Morris and P. S. Wheatley, Angew. Chem., Int. Ed., 2008,
47, 4966; (b) J.-R. Li, R. J. Kupper and H.-C. Zhou, Chem. Soc.
Rev., 2009, 38, 1477.
5 S. Biswas, T. Ahnfeldt and N. Stock, Inorg. Chem., 2011, 50, 9518.
6 Z. Wang and S. M. Cohen, J. Am. Chem. Soc., 2007, 129, 12368.
7 (a) Z. Wang and S. M. Cohen, Chem. Soc. Rev., 2009, 38, 1315;
(b) K. K. Tanabe and S. M. Cohen, Chem. Soc. Rev., 2011, 40, 498.
8 (a) K. L. Mulfort, O. K. Farha, C. L. Stern, A. A. Sarjeant and
J. T. Hupp, J. Am. Chem. Soc., 2009, 131, 3866; (b) Z. Wang,
K. K. Tanabe and S. M. Cohen, Chem.–Eur. J., 2010, 16, 212;
(c) Y.-S. Bae, O. K. Farha, J. T. Hupp and R. Q. Snurr, J. Mater.
Chem., 2009, 19, 2131.
9 (a) K. K. Tanabe and S. M. Cohen, Angew. Chem., Int. Ed., 2009,
48, 7424; (b) X. Zhang, F. X. Llabre
J. Catal., 2009, 265, 155; (c) A. Corma, M. Iglesias, F. X. Llabre
Xamena and F. Sanchez, Chem.–Eur. J., 2010, 16, 9789.
´
s I Xamena and A. Corma,
´
s I
´
10 S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen and
I. D. Williams, Science, 1999, 283, 1148.
11 (a) K. Schlichte, T. Kratzke and S. Kaskel, Microporous Meso-
porous Mater., 2004, 73, 81; (b) P. Krawiec, M. Kramer, M. Sabo,
Fig. 4 Powder X-ray diffractograms of Cu3(NH2btc)2 (black) and the
R. Kunschke, H. Frode and S. Kaskel, Adv. Eng. Mater., 2006,
¨
modified samples (coloured).
8, 293; (c) J. Liu, J. T. Culp, S. Natesakhawat, B. C. Bockrath,
B. Zande, S. G. Sankar, G. Garberoglio and J. K. Johnson,
J. Phys. Chem. C, 2007, 111, 9305; (d) J. L. C. Rowsell and
O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 1304.
15 or 20 equivalents of acetic anhydride even loses its porosity
completely. This leads to the assumption that the framework is
destructed by the treatment with higher amounts of acetic
anhydride than 10 equivalents. This result is not very surprising,
since acetic acid is built during the PSM reaction and Cu3(btc)2
is known to be not stable in acid media. However, it is possible
to get materials with a tuneable degree of conversion up to
70%, which still show an acceptable porosity. The thermal
stability of the modified samples slightly increases relative to
the unmodified Cu3(NH2btc)2 (Fig. S8, ESIw).
In summary, we have successfully synthesised a new tri-
carboxylic linker and the resulting amino substituted MOF
Cu3(NH2btc)2. The MOF shows good adsorption properties
for a series of gases. The accessibility of the amino groups
could be successfully proved by postsynthetic modification
with acetic anhydride. The amount of acetic anhydride was
varied from 1 equivalent up to 20 equivalents relating to the
amount of amino groups. The modification was verified by
1H NMR and ESI-MS analysis. XRD and N2 physisorption
studies showed the breakup of the framework by the use of
acetic anhydride concentrations higher than 10 equivalents.
However, it was possible to get porous materials with a
tuneable degree of conversion up to 70%. The combination
of ‘‘open’’ metal sites and accessible amino functionalities in
this new MOF reveals great potential for use as NO storage
material, as it should be possible to store NO via chemisorption
12 M. J. Ingleson, R. Heck, J. A. Gould and M. J. Rosseinsky, Inorg.
Chem., 2009, 48(21), 9986.
13 (a) A. C. McKinlay, R. E. Morris, P. Horcajada, G. Gerey,
´
P. Couvreur and C. Serre, Angew. Chem., Int. Ed., 2010,
49, 6260; (b) A. C. McKinlay, B. Xio, D. S. Wragg,
P. S. Wheatley, I. L. Megson and R. E. Morris, J. Am. Chem.
Soc., 2008, 130, 10440; (c) B. Xiao, P. S. Wheatley, X. Zhao,
A. J. Fletcher, S. Fox, A. G. Rossi, I. L. Megson, S. Bordiga,
L. Regli, K. M. Thomas and R. E. Morris, J. Am. Chem. Soc.,
2007, 129, 1203.
14 Y. Cai, Y. Zhang, Y. Huang, S. R. Marder and K. S. Walton,
Cryst. Growth Des., 2012, 12(7), 3709.
15 A. J. Garibay and S. M. Cohen, Chem. Commun., 2010, 46,
7700–7702.
16 J. G. Nguyen, K. K. Tanabe and S. M. Cohen, CrystEngComm,
2010, 12, 2335.
17 W. Morris, C. J. Doonan and O. M. Yaghi, Inorg. Chem., 2011,
50(15), 6853.
18 M. Savonnet, D. Bazer-Bachi, N. Bats, J. Perez-Pellitero,
E. Jeanneau, V. Lecocq, C. Pinel and D. Farrusseng, J. Am. Chem.
Soc., 2010, 132, 4518.
19 (a) B. Xiao, P. S. Wheatley, X. B. Zhao, A. J. Fletcher, S. Fox,
A. G. Rossi, S. Megson, S. Bordiga, L. Regli, K. M. Thomas and
R. E. Morris, J. Am. Chem. Soc., 2007, 129, 1203; (b) Q. M. Wang,
D. M. Shen, M. Bulow, M. L. Lau, S. G. Deng, F. R. Fitch,
N. O. Lemcoff and J. Semanscin, Microporous Mesoporous Mater.,
2002, 55, 217; (c) B. Panella, M. Hirscher, H. Putter and U. Muller,
¨
¨
Adv. Funct. Mater., 2006, 16, 520; (d) To the best of our knowledge
no experimental high pressure measurements of CH4 on Cu3(btc)2
have been reported so far; (e) J. R. Karra and K. S. Walton,
J. Phys. Chem. C, 2010, 114, 15735.
c
11198 Chem. Commun., 2012, 48, 11196–11198
This journal is The Royal Society of Chemistry 2012