10.1002/anie.201707933
Angewandte Chemie International Edition
COMMUNICATION
(A)
Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem.
Rev. 2010, 110, 890; e) Y. D. Bidal, F. Lazreg, C. S. J. Cazin, ACS
Catal. 2014, 4, 1564; f) H. Jang, A. R. Zhugralin, Y. Lee, A. H. Hoveyda,
J. Am. Chem. Soc. 2011, 133, 7859.
O
O
KHF2 (4.5 equiv)
FmocHN
FmocHN
THF/H2O (2:1)
rt, 24 h, 85%
B(MIDA)
BF3K
4m
9
[5]
[6]
a) E. P. Gillis, M. D. Burke, J. Am. Chem. Soc. 2007, 129, 6716; b) B. E.
Uno, E. P. Gillis, M. D. Burke, Tetrahedron 2009, 65, 3130; c) E. M.
Woerly, A. H. Cherney, E. K. Davis, M. D. Burke, J. Am. Chem. Soc.
2010, 132, 6941; d) E. M. Woerly, J. E. Miller, M. D. Burke, Tetrahedron
2013, 69, 7732.
OBn
TfO-·H3N+
O
O
10, 1.0 equiv
FmocHN
OBn
N
H
DCH (1.1 equiv)
THF/pH 3.0 buffer (1:1, 1 mM)
rt, 24 h
O
a) M. Yamashita, Y. Suzuki, Y. Segawa, K. Nozaki, J. Am. Chem. Soc.
2007, 129, 9570; b) Y. Segawa, Y. Suzuki, M. Yamashita, K. Nozaki, J.
Am. Chem. Soc. 2008, 130, 16069; c) J. Monot, A. Solovyev, H. Bonin-
Dubarle, É. Derat, D. P. Curran, M. Robert, L. Fensterbank, M. Malacria,
E. Lacôte, Angew. Chem. Int. Ed. 2010, 49, 9166; d) R. Frank, J.
Howell, J. Campos, R. Tirfoin, N. Phillips, S. Zahn, D. M. P. Mingos, S.
Aldridge, Angew. Chem. Int. Ed. 2015, 9586; Angew. Chem. 2015, 127,
14365; e) A. M. Dumas, J. W. Bode, Org. Lett. 2012, 14, 2138; A. M.
Dumas, G. A. Molander, J. W. Bode, Angew. Chem. Int. Ed. 2012, 51,
5683; Angew. Chem. 2012, 124, 5781. f) G. Erös, Y. Kushida, J. W.
Bode, Angew. Chem. Int. Ed. 2014, 53, 7604; Angew. Chem. 2014, 126,
7734.
(Fmoc)Gly–Gly(OBn) (11), 50%
(B)
FmocHN
O
H
N
N
Cl-·H3N+
+
BF3K
O
COOBn
O
Me
12
13, 1.0 equiv
O
H
DCH (1.1 equiv)
N
N
FmocHN
N
THF/pH 3.0 buffer (1:1, 0.1 M)
rt, 1 h
H
O
Me
O
COOBn
(Fmoc)Gly–Ala–Gly–Pro(OBn) (14)
[7]
Tolerance of C–B bond in organoboron compounds in ozonolysis was
reported; a) G. A. Molander, D. J. Cooper, J. Org. Chem. 2007, 72,
3558; b) J. D. St Denis, A. Zajdlik, J. Tan, P. Trinchera, C. F. Lee, Z. He,
S. Adachi, A. K. Yudin, J. Am. Chem. Soc. 2014, 136, 17669; c) D. J.
Brauer, G. Pawelke, J. Organomet. Chem. 2000, 604, 43.
61%, dr = 98:2
Scheme 4. Oligopeptide synthesis between α-amino KAT and amino acid
using chlorinating agent in water. (A) Dipeptide synthesis in highly diluted
solution. (B) Preservation of stereochemistry in tetrapeptide synthesis.
[8]
[9]
In 2012, Yudin has also reported that acyloxy MIDA boronate could be
synthesized by the oxidation of acyl MIDA boronates using m-CPBA
(See ref. 3a)
a) G. Büchi, H. Wüest, J. Am. Chem. Soc. 1978, 100, 294; b) K. Igawa,
Y. Kawasaki, K. Tomooka, Chem. Lett. 2011, 40, 233.
Acknowledgements
[10] R. Willand-Charnley, T. J. Fisher, B. M.Johnson, P. H. Dussault, Org.
Lett. 2012, 14, 2242.
This study was financially supported by the MEXT (Japan)
program (Strategic Molecular and Materials Chemistry through
Innovative Coupling Reactions) of Hokkaido University, as well
as the JSPS (KAKENHI Grant Numbers 15K13633, 15H03804
and 17H06370). J. T. would like to thank the JSPS for
scholarship funding (KAKENHI Grant Number 16J01384). We
would also like to thank Mingoo Jin and Dr. Tomohiro Seki for
their help analyzing the X-ray crystallography data.
[11] The enantiomeric excess of (S)-4n slightly increased from (S)-1n. This
would be caused by precipitation in the purification process of (S)-4n.
Keywords: Amino acids • Boron • Chemical ligation • MIDA
boronate • Ozonolysis
[1]
[2]
a) F. K. Scharnagl, S. K. Bose, T. B. Marder, Org. Biomol. Chem. 2017,
15, 1738. b) H. Noda, J. W. Bode, Org. Biomol. Chem. 2016, 14, 16; c)
J. D. St. Denis, Z. He, A. K. Yudin ACS Catal. 2015, 5, 5373.
a) A. M. Dumas, G. A. Molander, J. W. Bode, Angew. Chem. Int. Ed.
2012, 51, 5683; Angew. Chem. 2012, 124, 5781. b) H. Noda, G. Erós, J.
W. Bode, J. Am. Chem. Soc. 2014, 136, 5611; c) H. Noda, J. W. Bode,
Chem. Sci. 2014, 5, 4328; d) M. Liu, D. Mazunin, V. R. Pattabiraman, J.
W. Bode, Org. Lett. 2016, 18, 5336; e) D. Mazunin, N. Broguiere, M.
Zenobi-Wong, J. W. Bode, ACS Biomater. Sci. Eng. 2015, 1, 456; f)
Noda, H.; Bode, J. W. J. Am. Chem. Soc. 2015, 137, 3958.
[3]
a) Z. He, P. Trinchera, S. Adachi, J. D. St Denis, A. K. Yudin, Angew.
Chem. Int. Ed. 2012, 51, 11092; Angew. Chem. 2012, 124, 11254; b) S.
Adachi, S. K. Liew, C. F. Lee, A. Lough, Z. He, J. D. S. Denis, G. Poda,
A. K. Yudin, Org. Lett. 2015, 17, 5594; c) D. B. Diaz, C. C. G. Scully, S.
K. Liew, S. Adachi, P. Trinchera, J. D. St Denis, A. K. Yudin, Angew.
Chem. Int. Ed. 2016, 55, 12659; Angew. Chem. 2016, 128, 12849; d) C.
F. Lee, A. Holownia, J. M. Bennett, J. M. Elkins, D. St. Denis, S. Adachi,
A. K. Yudin, Angew. Chem. Int. Ed. 2017, 56, 6264; Angew. Chem.
2017, 129, 6360; e) G. A. Molander, J. Raushel, N. M. Ellis, J. Org.
Chem. 2010, 75, 4304; f) F. Saito, J. W. Bode, Chem. Sci. 2017, 8,
2878 g) A. O. Gálvez, C. P. Schaack, H. Noda, J. W. Bode, J. Am.
Chem. Soc. 2017, 139, 1826.
[4]
a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457; b) E. C. Neeve,
S. J. Geier, I. A. I. Mkhalid, S. A. Westcott, T. B. Marder, Chem. Rev.
2016, 116, 9091; c) J. Yun, Asian J. Org. Chem. 2013, 2, 1016; d) I. A. I.
This article is protected by copyright. All rights reserved.