Page 5 of 6
Chemical Science
Please do not adjust margins
Journal Name
ARTICLE
In conclusion, we have developed an experimentally facile, one‐pot
transformation reinforcing disulfide linkages in peptides as
thioacetals. No synthetic incorporation of engineered amino acids is
needed for this stapling process. The protocol operates under mild,
bio‐compatible conditions (aqueous solution, mild pH and at
ambient temperature) and is tolerant towards unprotected amino
acids possessing a variety of functional groups. Furthermore, the
high site specificity for the insertion into disulfide bonds further
enhanced the reactions utility and versatility. The methylene
thioacetal bridge completely eliminates the reductive liability of the
disulfide group, contributing to an enhanced structural stability. We
have exemplarily shown for Oxytocin that the thioacetal analogue
exhibits superior stability while maintaining binding affinities and
functional activities of the same magnitude. This methodology is an
additional tool for stapling peptides using natural linking points with
potential impact for the medicinal application of bioactive peptides.
DOI: 10.1039/C6SC02285E
b) J. Vagner, H. Qu and V. J. Hruby, Curr. Opin. Chem. Biol. 2008,
12, 292‐296; c) I. E. Valverde, A. Bauman, C. A. Kluba, S.
Vomstein, M. A. Walter and T. L. Mindt, Angew. Chem. Int. Ed.
2013, 52, 8957‐8960.
5. a) Y. H. Lau, P. de Andrade, Y. Wu and D. R. Spring, Chem.
Soc. Rev. 2015, 44, 91‐102; b) C. J. White and A. K. Yudin, Nature
Chem. 2011, 3, 509‐524.
6. a) H. Jo, N. Meinhardt, Y. Wu, S. Kulkarni, X. Hu, K. E. Low, P.
L. Davies, W. F. DeGrado and D. C. Greenbaum, J. Am. Chem.
Soc. 2012, 134, 17704‐17713; b) A. M. Spokoyny, Y. Zou, J. J.
Ling, H. Yu, Y.‐S. Lin and B. L. Pentelute, J. Am. Chem. Soc. 2013,
135, 5946‐5949.
7. S. Shaunak, A. Godwin, J.‐W. Choi, S. Balan, E. Pedone, D.
Vijayarangam, S. Heidelberger, I. Teo, M. Zloh and S. Brocchini,
Nat. Chem. Biol. 2006, 2, 312‐313.
8. a) C. E. Schafmeister, J. Po and G. L. Verdine, J. Am. Chem.
Soc. 2000, 122, 5891‐5892; b) G. L. Verdine and G. J. Hilinksi,
Methods Enzymol. 2012, 503, 3‐33; c) L. D. Walensky, A. L. Kung,
I. Escher, T. J. Malia, S. Barbuto, R. D. Wright, G. Wagner, G. L.
Verdine and S. J. Korsmeyer, Science 2004, 305, 1466‐1470.
9. a) A. Holmgren and M. Bjornstedt, in Methods Enzymol.,
Academic Press, 1995, vol. 252, pp. 199‐208; b) G. Powis and W.
R. Montfort, Annu. Rev. Pharmacol. Toxicol. 2001, 41, 261‐295.
10. C. W. Smith, R. Walter, S. Moore, R. C. Makofske and J.
Meienhofer, J. Med. Chem. 1978, 21, 117‐120.
Acknowledgements
This work is supported by the Swiss National Centre of
Competence in Research Chemical Biology. We gratefully
acknowledge C. Heinis for the use of the peptide synthesiser in
his laboratory and K. Johnsson for helpful discussions.
11. a) N. Assem, D. J. Ferreira, D. W. Wolan and P. E. Dawson,
Angew. Chem. Int. Ed. 2015, 54, 8665‐8668; b) Z. Dekan, I.
Vetter, N. L. Daly, D. J. Craik, R. J. Lewis and P. F. Alewood, J. Am.
Chem. Soc. 2011, 133, 15866‐15869; c) G. Ösapay, L. Prokai, H.‐S.
Kim, K. F. Medzihradszky, D. H. Coy, G. Liapakis, T. Reisine, G.
Melacini, Q. Zhu, S. H. H. Wang, R.‐H. Mattern and M. Goodman,
J. Med. Chem. 1997, 40, 2241‐2251.
Notes and references
General procedure for the synthesis of SCS‐OXT. To a round
bottom flask containing a stirrer bar was added 1.00 eq. of Oxytocin
acetate powder (3.20 mg, 3.20 µmol) and H2O (3.60 mM). A
solution of TCEP∙HCl (1.50 eq.) and K2CO3 (3.00 eq.) in H2O
(29.0 mM) was added via syringe. The reaction was stirred at room
temperature for 1.25 hours. The progress of the reaction was
monitored by HPLC‐MS. Upon completion of this first step of the
process, triethylamine (5.00 eq.) in THF (0.30 M) and then
diiodomethane (4.00 eq.) in THF (0.25 M) were added sequentially
to the reaction mixture via micro‐syringe. The reaction mixture was
stirred at room temperature for 6.5 hours. The progress of the
reaction was monitored by HPLC‐MS. Once adjudged complete, the
reaction mixture was diluted with H2O (5.00 mL) and lyophilised.
Then, the crude peptide was purified by RP preparative HPLC, using
a linear gradient of 5% B to 50% B over 30 minutes at a flow rate of
25.0 mL/min with UV detection at 220 nm, 254 nm and 280 nm.
(Solvent A = 99.9% v/v H2O and 0.1% v/v formic acid; Solvent B =
95% v/v MeCN: 5% v/v H2O and 0.1% v/v formic acid). The pure
product was isolated in 78% yield (2.50 mg) as a fluffy white
powder.
12. a) A. D. de Araujo, M. Mobli, J. Castro, A. M. Harrington, I.
Vetter, Z. Dekan, M. Muttenthaler, J. Wan, R. J. Lewis, G. F. King,
S. M. Brierley and P. F. Alewood, Nat. Commun. 2014,
5; b) H.
Vogt and S. Brase, Org. Biomol. Chem. 2007, , 406‐430; c) M.
5
Muttenthaler, A. Andersson, A. D. de Araujo, Z. Dekan, R. J.
Lewis and P. F. Alewood, J. Med. Chem. 2010, 53, 8585‐8596; d)
R. Walter and V. du Vigneaud, J. Am. Chem. Soc. 1966, 88, 1331‐
1332.
13. a) R. F. Nutt, D. F. Veber and R. Saperstein, J. Am. Chem. Soc.
1980, 102, 6539‐6545; b) J. L. Stymiest, B. F. Mitchell, S. Wong
and J. C. Vederas, Org. Lett. 2003,
14. S. Brocchini, S. Balan, A. Godwin, J.‐W. Choi, M. Zloh and S.
Shaunak, Nat. Protoc. 2006, , 2241‐2252.
5, 47‐49.
1
15. a) R. J. Clark, H. Fischer, L. Dempster, N. L. Daly, K. J.
Rosengren, S. T. Nevin, F. A. Meunier, D. J. Adams and D. J. Craik,
Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 13767‐13772; b) J. A.
Ember, S. D. Sanderson, S. M. Taylor, M. Kawahara and T. E.
Hugli, J. Immunol. 1992, 148, 3165‐3173.
16. a) S. Lindman, G. Lindeberg, A. Gogoll, F. Nyberg, A. Karlén
and A. Hallberg, Bioorg. Med. Chem. 2001, 9, 763‐772; b) H. I.
Mosberg and J. R. Omnaas, J. Am. Chem. Soc. 1985, 107, 2986‐
2987; c) H. I. Mosberg, J. R. Omnaas and A. Goldstein, Mol.
Pharmacol. 1987, 31, 599‐602; d) M. Ueki, T. Ikeo, K. Hokari, K.
Nakamura, A. Saeki and H. Komatsu, Bull. Chem. Soc. Jpn. 1999,
72, 829‐838; e) M. Ueki, T. Ikeo, M. Iwadate, T. Asakura, M. P.
1. a) A. K. Sato, M. Viswanathan, R. B. Kent and C. R. Wood,
Curr. Opin. Biotechnol. 2006, 17, 638‐642; b) D. Goodwin, P.
Simerska and I. Toth, Curr. Med. Chem. 2012, 19, 4451‐4461; c)
P. Vlieghe, V. Lisowski, J. Martinez and M. Khrestchatisky, Drug
Discov. Today 2010, 15, 40‐56.
2. M. Góngora‐Benítez, J. Tulla‐Puche and F. Albericio, Chem.
Rev. 2014, 114, 901‐926.
3. a) R. P. Cheng, S. H. Gellman and W. F. DeGrado, Chem. Rev.
2001, 101, 3219‐3232; b) S. Y. Hong, J. E. Oh and K.‐H. Lee,
Biochem. Pharmacol. 1999, 58, 1775‐1780; c) M. Tanaka, Chem.
Pharm. Bull. 2007, 55, 349‐358; d) M. T. Dohm, R. Kapoor and A.
E. Barron, Curr. Pharm. Des. 2011, 17, 2732‐2747; e) R.
Lemmens‐Gruber, M. R. Kamyar and R. Dornetshuber, Curr.
Med. Chem. 2009, 16, 1122‐1137.
Williamson and J. Slaninova, Bioorg. Med. Chem. Lett. 1999,
1767‐1772.
9,
17. a) S. Chen, J. Morales‐Sanfrutos, A. Angelini, B. Cutting and C.
Heinis, ChemBioChem 2012, 13, 1032‐1038; b) C. Heinis, T.
Rutherford, S. Freund and G. Winter, Nat. Chem. Biol. 2009, 5,
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1‐3 | 5
Please do not adjust margins