Organic Letters
Letter
ACKNOWLEDGMENTS
We thank the CNRS, Normandie Universite,
■
́
Labex Synorg
(ANR-11-LABX-0029), and the Fonds der chemischen
Industrie and the University of Cologne within the excellence
initiative for financial support and the Regional Computing
Center of the University of Cologne (RRZK).
Figure 2. Computed structures of selected intermediates (selected
bond lengths in angstroms).
DEDICATION
Dedicated to memory of Dr. Alain-Pierre Chatrousse.
■
REFERENCES
■
(1) Curran, D. P.; Liu, H. J. Am. Chem. Soc. 1991, 113, 2127.
(2) For a review on the use of isonitriles as radical acceptors, see:
Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505.
the difficulty in characterizing the resulting complex. The EDA
4−5a subsequently undergoes an endergonic SET to generate
the phenyl radical 8 as confirmed by EPR. This radical then
abstracts a hydrogen from the secondary phosphine oxide 2a to
form the corresponding phosphorus-centered radical 9. No
transition states could be located for this process, indicating the
high reactivity of the phenyl radical 8.15 Next, the phosphinoyl
radical adds to the isonitrile 1a via TS1, giving rise to the
imidoyl radical 10. Rapid cyclization through TS2 yields the
cyclohexadienyl radical 11. The latter is then oxidized with the
diphenylidonium triflate 4 to form the arenium ion 12, which is
rapidly deprotonated with Et3N, 5a, to afford the final product
3a. Based on the calculated free energies for the catalytic cycle
of Scheme 2, all steps are thermodynamically feasible and
proceed rapidly under the reaction conditions.
In summary, we have shown the high efficiency of
diphenyliodonium ion 4 and Et3N 5a in forming an EDA
complex, which in turn is able to generate a phenyl radical
under very mild conditions. Although recent efforts have mainly
been focused on the use of such a radical for arylation reactions,
we capitalize here on its unique reactivity to act as a strong
hydrogen atom abstractor to form phosphorus-centered
radicals. This has been applied to describe the first metal-free
approach for the synthesis of 6-phosphorylated phenanthri-
dines, starting from easily accessible starting materials. The
reaction mechanism of this process has been elucidated on the
basis of EPR spectroscopy, which allowed the characterization
of Ph• and phosphinoyl radicals, thus providing evidence for
their intermediacy in the reaction mechanism. Given the
mildness of the process, this research should open doors for not
only the generation of phosphorus-centered radicals but also
many other radical types of potential applications in organic
synthesis.
(3) For selected examples, see: (a) Zhang, B.; Muck-Lichtenfeld, C.;
̈
Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2013, 52, 10792.
(b) Tobisu, M.; Koh, K.; Furukawa, T.; Chatani, N. Angew. Chem., Int.
Ed. 2012, 51, 11363. (c) Liu, J.; Fan, C.; Yin, H.; Qin, C.; Zhang, G.;
Zhang, X.; Yi, H.; Lei, A. Chem. Commun. 2014, 50, 2145. (d) Zhang,
B.; Studer, A. Org. Lett. 2014, 16, 1216. (e) Janza, B.; Studer, A. Org.
Lett. 2006, 8, 1875. (f) Sun, X.; Li, J.; Ni, Y.; Ren, D.; Hu, Z.; Yu, S.
Asian J. Org. Chem. 2014, 3, 1317. (g) Cheng, Y.; Yuan, X.; Jiang, H.;
Wang, R.; Ma, J.; Zhang, Y.; Yu, S. Adv. Synth. Catal. 2014, 356, 2859.
(4) For selected reviews of visible-light photoredox catalysis, see:
(a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013,
113, 5322. (b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116,
10075.
(5) (a) Zhang, B.; Daniliuc, C. G.; Studer, A. Org. Lett. 2014, 16, 250.
A catalytic version of this reaction has recently been accomplished by
Cao et al. by using AgOAc (20 mol %) with PhI(OAc)2 (3.0 equiv) at
100 °C: (b) Cao, J.-J.; Zhu, T.-H.; Gu, Z.-Y.; Hao, W.-J.; Wang, S.-Y.;
Ji, S.-J. Tetrahedron 2014, 70, 6985.
(6) Li, Y.; Qiu, G.; Ding, Q.; Wu, J. Tetrahedron 2014, 70, 4652.
(7) Li, C−X.; Tu, D−S.; Yao, R.; Yan, H.; Lu, C.-S. Org. Lett. 2016,
18, 4928.
(8) For a recent comprehensive review on phosphorus-centered
radical reactions, see: Pan, X.-Q.; Zou, J.-P.; Yi, W.-B.; Zhang, W.
Tetrahedron 2015, 71, 7481 and references therein.
(9) For a review on the use of electron donor−acceptor complexes in
organic synthesis, see: (a) Lima, C. G. S.; de M. Lima, T.; Duarte, M.;
Jurberg, I. D.; Paixao, M. W. ACS Catal. 2016, 6, 1389. For selected
̃
reactions via EDA complexes, see: (b) Cheng, Y.; Yuan, X.; Ma, J.; Yu,
S. Chem. - Eur. J. 2015, 21, 8355. (c) Kandukuri, S. R.; Bahamonde, A.;
Chatterjee, I.; Jurberg, I. D.; Escudero-Adan, E. C.; Melchiorre, P.
Angew. Chem., Int. Ed. 2015, 54, 1485. (d) Nappi, M.; Bergonzini, G.;
Melchiorre, P. Angew. Chem., Int. Ed. 2014, 53, 4921.
(10) (a) Dohi, T.; Ito, M.; Yamaoka, N.; Morimoto, K.; Fujioka, H.;
Kita, Y. Angew. Chem., Int. Ed. 2010, 49, 3334. (b) Tobisu, M.;
Furukawa, T.; Chatani, N. Chem. Lett. 2013, 42, 1203.
(11) For selected methods for the generation of aryl radicals from
diaryliodonium salts, see: (a) Wen, J.; Zhang, R.-Y.; Chen, S.-Y.;
Zhang, J.; Yu, X.-Q. J. Org. Chem. 2012, 77, 766. (b) Wang, D.; Ge, B.;
Li, L.; Shan, J.; Ding, Y. J. Org. Chem. 2014, 79, 8607. (c) Quint, V.;
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
́
Morlet-Savary, F.; Lohier, J.-F.; Lalevee, J.; Gaumont, A.-C.; Lakhdar,
S. J. Am. Chem. Soc. 2016, 138, 7436. For applications of
diaryliodonium salts in organic synthesis, see: (d) Olofsson, B. Top.
Curr. Chem. 2016, 373, 135. (e) Merritt, E. A.; Olofsson, B. Angew.
Chem., Int. Ed. 2009, 48, 9052.
Full experimental procedures, spectroscopic character-
izations, computational data, and NMR spectra; crystallo-
graphic data for compound 3j, 3h, and 3o (PDF)
(12) (a) Morlet-Savary, F.; Klee, J. E.; Pfefferkorn, F.; Fouassier, J.-P.;
́ ́
Lalevee, J. Macromol. Chem. Phys. 2015, 216, 2161. (b) Lalevee, J.;
Morlet-Savary, F.; Tehfe, M.-A.; Graff, B.; Fouassier, J.-P. Macro-
molecules 2012, 45, 5032.
AUTHOR INFORMATION
Corresponding Authors
■
(13) For details of the computational investigation, see the
Notes
(14) Cheng, Y.; Yu, S. Org. Lett. 2016, 18, 2962.
(15) Fouassier, J.-P.; Lalevee
Scope, Reactivity and Efficiency; Wiley-VCH: Weinheim, 2012.
́
, J. Photoinitiators for Polymer Synthesis:
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX