Journal of the American Chemical Society
Communication
Figure 4b shows the PCEs for the cells fabricated as a function
of overlayer thickness for Py-C and spiro-OMeTAD. The cells
fabricated with Py-C show a maximum PCE at a relatively thinner
overlayer thickness than 100 nm. On the other hand, spiro-
OMeTAD has shown a maximum efficiency in relatively thicker
cells than 180 nm in overlayer thickness. The cells fabricated
using the thicker spiro-OMeTAD are similar with the average
performance reported by M. Gratzel et al.4f The values of Jsc for
the cells fabricated with Py-B, Py-C, Sp-A, and Sp-B are 20.4,
20.2, 20.2, and 21.0 mA cm−2, respectively. This indicates that
there is a small difference in the charge collection of the HTMs
(Py-B, Py-C, Sp-A, and Sp-B). We also see the enhancement of
the Voc values in the sequence of Sp-A, Py-C, Py-B, and Sp-B. The
difference in Voc for the cells fabricated with Py-B and Py-C as
HTMs agrees with the relative difference in the HOMO levels of
the two HTMs because the photovoltage is determined by the
difference in the quasi-Fermi level of the electrons in the TiO2
and the quasi-Fermi level of the holes in the hole conductor. The
higher Voc value observed in Sp-B might be attributed to the
effective movement of electrons from the HOMO of spiro-
OMeTAD to the Co-complex, which is used as dopant, inducing
a lower shift in the Fermi level to the HOMO of spiro-
OMeTAD.7 In addition, the Voc may be attributed the charge
recombination kinetics. Diode-like current−voltage (I−V)
characteristics in the dark can give an evident insight into the
charge recombination in the real device. As shown in the inset of
Figure 4b, the cell with Py-C has a relatively lower dark current
and an upper shift in the onset, compared to Py-C. This implies
that Py-C has an electron-blocking ability superior to that of
spiro-OMeTAD. Thus, it would be effective to reduce the use of
expensive HTMs. However, the dependence of the Voc on the
HTMs may be attributed to several factors and will require
additional study. Figure 4a and Table 2 show that comparable
performance of Py-C and Sp-B as HTMs is due to the enhanced
FF despite the difference in their Jsc’s and Voc’s. The FF is related
to series resistance (Rs) and shunt resistance (Rsh). In order to
obtain a high FF, the solar cells should have a low Rs and a high
Rsh. In other words, the HTM layer should effectively block the
electron and transport the hole from MAPbI3 to the Au
electrode. The main difference between the cells studied here is
the HTM, as the configurations of the cells are similar with regard
to the thickness of the overlayers below the Au electrode (see
Figure 3b). This means that the FF value can partly be explained
by the increased hole-transporting and electron-blocking ability
of the HTMs, which would decrease the possibility for the
photogenerated charges to recombine before they reach the
contacts. From the J−V curves under a condition of 1 sun, the Py-
B- and Py-C-based cells showed Rs = 64.26 and 51.57 Ω,
respectively, whereas the spiro-OMeTAD had Rs = 85.87 Ω.
Therefore, the pyrene-core HTM, especially Py-C, exhibited a
better FF than the spiro-OMeTAD.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and additional figures. This material is
■
S
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This study was supported by the Global Research Laboratory
(GRL) Program and the Global Frontier R&D Program on
Center for Multiscale Energy System funded by the National
Research Foundation under the Ministry of Science, ICT &
Future, Korea, and by a grant from the KRICT 2020 Program for
Future Technology of the Korea Research Institute of Chemical
Technology (KRICT), Republic of Korea.
REFERENCES
■
(1) (a) Burschka, J.; Dualeh, A.; Kessler, F.; Baranoff, E.; Cevey-Ha, N.-
L.; Yi, C.; Nazeeruddin, M. K.; Gratzel, M. J. Am. Chem. Soc. 2011, 133,
18042. (b) Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G.
Nature 2012, 485, 486. (c) Zhang, W.; Zhu, R.; Li, F.; Wang, Q.; Liu, B. J.
Phys. Chem. C 2011, 115, 7038.
(2) (a) Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.;
Heeger, A. J. Nat. Mater. 2012, 11, 44. (b) Li, G.; Zhu, R.; Yang, Y. Nat.
Photon. 2012, 6, 153. (c) Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.;
Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C.; Kan, B.; Li, M.; Chen, Y. J. Am.
Chem. Soc. 2013, 135, 8484.
(3) (a) Sangtra, P. K.; Kamat, P. V. J. Am. Chem. Soc. 2012, 134, 2508.
(b) Lee, Y. H.; Im, S. H.; Rhee, J. H.; Lee, J.-H.; Seok, S. I. ACS Appl.
Mater. Interfaces 2010, 2, 1648. (c) Chang, J. A.; Rhee, J. H.; Im, S. H.;
Lee, Y. H.; Kim, H.-J.; Seok, S. I.; Nazeeruddin, M. K.; Gratzel, M. Nano
Lett. 2010, 10, 2609. (d) Im, S. H.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.;
̈
Maiti, N.; Kim, H.-j.; Nazeeruddin, Md. K.; Gratzel, M.; Seok, S. I. Nano
̈
Lett. 2011, 11, 4789. (e) Chang, J. A.; Im, S. H.; Lee, Y. H.; Kim, H.-j.;
Lim, C.-S.; Heo, J. H.; Seok, S. I. Nano Lett. 2012, 12, 1863. (f) Im, S. H.;
Kim, H.-j.; Kim, S. W.; Kim, S.-W.; Seok, S. I. Energy Environ. Sci. 2011, 4,
4181.
(4) (a) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem.
Soc. 2009, 131, 6050. (b) Lee, M. M.; Teuscher, J.; Miyasaka, T.;
Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. (c) Kim, H.-S.;
Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.;
Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Gratzel, M.; Park, N.-G.
Sci. Rep. 2012, 2, 591:1-7. (d) Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal,
T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.; Sarkar, A.;
̈
Nazeeruddin, M. K.; Gratzel, M.; Seok, S. I. Nat. Photon. 2013, 7, 486.
̈
(e) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett.
2013, 13, 1764. (f) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker,
R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Nature 2013, 499, 316.
̈
(g) Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
(h) Cai, B.; Xing, Y.; Yang, Z.; Zhang, W.-H.; Qiu, J. Energy Environ. Sci
2013, 6, 1480.
(5) (a) Haedler, A. T.; Misslitz, H.; Buehlmeyer, C.; Albuquerque, R.
In summary, we synthesized pyrene-core arylamine derivatives
that were applied in solar cells as HTMs. On the basis of the CV
measurements and UV/vis spectra, the HOMO/LUMO of the
pyrene-core arylamine derivatives were characterized for use as
HTMs. The derivatives were used to fabricate feasible perovskite
solar cells. Energy conversion efficiencies of 12.4% and 12.7%
were measured for the devices with Py-C and spiro-OMeTAD as
HTM. We believe that pyrene-core arylamine derivatives can be
used as HTMs for the fabrication of efficient and cost-effective
photovoltaic devices.
Q.; Kohler, A.; Schmidt, H.-W. ChemPhysChem 2013, 14, 1818.
̈
(b) Anant, P.; Lucas, N. T.; Ball, J. M.; Anthopoulos, T. D.; Jacob, J.
Synth. Met. 2010, 160, 1987.
(6) Thomas, K. R.; Lin, J. T.; Tao, Y.-T.; Ko, C.-W. J. Am. Chem. Soc.
2001, 123, 9404.
(7) Noh, J. H.; Jeon, N. J.; Choi, Y. C.; Nazeeruddin, M. K.; Gratzel, M.;
Seok, S. I. J. Mater. Chem. A 2013, 1, 11842.
(8) Laban, W. A.; Etgar, L. Energy Environ Sci. 2013, 6, 3249.
̈
19090
dx.doi.org/10.1021/ja410659k | J. Am. Chem. Soc. 2013, 135, 19087−19090