D
N. Taniguchi, K. Kitayama
Letter
Synlett
reactivities (entries 9 and 10). Moreover, terminal alkyl
alkynes also gave good yields of the desired products (en-
tries 17 and 18), although their reactivity was much lower.
The reaction with ethyl propiolate afforded the expected
product in 81% yield (entry 19). Internal alkynes and termi-
nal alkynes reacted well (entries 20 and 21). Unfortunately,
the reactions of 1,1′-ethyne-1,2-diyldibenzene and of oct-
4-yne hardly gave any of the corresponding disulfides (en-
tries 22 and 23).
In conclusion, zinc-catalyzed alkene hydrosulfenylation
proceeded in various solvents, and the corresponding prod-
ucts were obtained regioselectively. Furthermore, the zinc-
catalyzed double hydrosulfenylation of alkynes with thiols
was achieved. The procedure also gave numerous desired
dithioacetals regioselectively in excellent yields.
Funding Information
To elucidate the reaction mechanism, several experi-
ments were then performed. When the reaction was per-
formed in the absence of oxygen, the corresponding dithio-
acetal was obtained in 68% yield (Scheme 4), indicating a
slight inhibition of this procedure.
This work was supported by the Daicel Corporation.()
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
2 × 4-TolSH
ZnI2 (10 mol%)
S-4-Tol
S-4-Tol
68%
Ph
Ph
PhMe, 100 °C
under N2
References and Notes
(1) (a) Comprehensive Organic Synthesis;
V
o
l.
6
Trost, B. M.; Fleming, I.,
Eds.; Pergamon: Oxford, 1991. (b) Krief, A. In Comprehensive
Scheme 4 Disulfenylation of ethynylbenzene in the absence of oxygen
Organometallic Chemistry II;
V
o
l.
1
1
,
C
h
a
p
.
1
3
Abel, E. W.; Stone, F. G. A.;
Wilkinson, G., Eds.; Pergamon: Oxford, 1995, 515. (c) Metzner,
P.; Thuillier, A. Sulfur Reagents in Organic Synthesis; Academic
Press: San Diego, 1994. (d) Organoselenium Chemistry: Modern
Developments in Organic Synthesis; Wirth, T., Ed.; Springer:
Berlin, 2000. (e) Baird, C. P.; Rayner, C. M. J. Chem. Soc., Perkin
Trans. 1 1998, 1973. (f) Rayner, C. M. Contemp. Org. Synth. 1996,
3, 499. (g) Kondo, T.; Mitsudo, T.-a. Chem. Rev. 2000, 100, 3205.
(h) Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320.
(i) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104,
3079. (j) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111,
1596. (k) Dondoni, A.; Marra, A. Eur. J. Org. Chem. 2014, 3955.
(l) Orlov, N. V. ChemistryOpen 2015, 4, 682.
However, the corresponding reaction in the presence of
TEMPO as a radical scavenger was completely inhibited
(Scheme 5).
2 × 4-TolSH
ZnI2 (10 mol%)
TEMPO (1equiv)
S-4-Tol
S-4-Tol
Not detected
S-4-Tol
Ph
Ph
Ph
PhMe, 100 °C
(2) Swiss, K. A.; Liotta, D. C. In Comprehensive Organic Synthesis;
V
o
l.
7
,
C
h
a
p
.
3.6
Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991, 515.
Not detected
(3) For selected reports on hydrosulfenylation of alkenes, see:
(a) Fossey, J.; Lefort, D.; Sorba, J. Free Radicals in Organic Chemis-
try; Wiley: Chichester, 1995. (b) Kanemasa, S.; Oderaotoshi, Y.;
Wada, E. J. Am. Chem. Soc. 1999, 121, 8675. (c) Munro-Leighton,
C.; Blue, E. D.; Gunnoe, T. B. J. Am. Chem. Soc. 2006, 128, 1446.
(d) Brown, R.; Jones, W. E.; Pinder, A. R. J. Chem. Soc. 1951, 3315.
(e) Bordwell, F. G.; Hewett, W. A. J. Am. Chem. Soc. 1957, 79,
3493. (f) Ichinose, Y.; Wakamatsu, K.; Nozaki, K.; Birbaum, J.-L.;
Oshima, K.; Utimoto, K. Chem. Lett. 1987, 1647. (g) Haché, B.;
Gareau, Y. Tetrahedron Lett. 1994, 35, 1837. (h) Belley, M.;
Zamboni, R. J. Org. Chem. 1989, 54, 1230. (i) Silveira, C. C.;
Mendes, S. R.; Libero, F. M. Synlett 2010, 790. (j) Ranu, B. C.;
Mandal, T. Synlett 2007, 925. (k) Caserio, M. C.; Fisher, C. L.; Kim,
J. K. J. Org. Chem. 1985, 50, 4390. (l) Kondo, T.; Uenoyama, S.-y.;
Fujita, K.-i.; Mitsudo, T.-a. J. Am. Chem. Soc. 1999, 121, 482.
(4) For selected recent papers on metal-catalyzed sulfenylations of
alkynes, see: (a) Cao, C.; Fraser, L. R.; Love, J. A. J. Am. Chem. Soc.
2005, 127, 17614. (b) Ranjit, S.; Duan, Z.; Zhang, P.; Liu, X. Org.
Lett. 2010, 12, 4134. (c) Kondoh, A.; Takami, K.; Yorimitsu, H.;
Oshima, K. J. Org. Chem. 2005, 70, 6468. (d) Weiss, C. J.; Wobser,
S. D.; Marks, T. J. Organometallics 2010, 29, 6308. (e) Shoai, S.;
Bichler, P.; Kang, B.; Buckley, H.; Love, J. A. Organometallics
2007, 26, 5778.
Scheme 5 Disulfenylation of ethynylbenzene in the presence of TEMPO
These results indicate that dihydrosulfenylation pro-
ceeds by radical processes (Scheme 6). A thiyl radical is
formed by reaction with a trace amount of oxygen.12 Aren-
ethiyl radicals are generated more rapidly than alkylthiyl
radicals.13 Finally, the reaction is promoted by the zinc cata-
lyst functioning as a Lewis acid.14 Further detailed investi-
gations of the conditions and the mechanism are ongoing.
R2SH
O2
R2SH
O2
R2S
SR2
SR2
R2S
SR2
R1
R1
R1
Zn2+
Zn2+
Scheme 6 A plausible reaction mechanism
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–E