Letter reSeArCH
Pd(OAc)2 (10 mol%)
L69 (30 mol%)
Figure 4 | Late-stage
F3C
CF3
OH
H
CO2Et
CO2Et
+
functionalization of natural
Ar
Ar
AgOAc, HFIP or CHCl3
100 ºC, 24 h
L69
N
products and drug molecules. Phth,
phthaloyl; Ts, 4-toluenesulfonyl;
HFIP, hexafluoroisopropanol; Phe,
phenylalanine; Tyr, tyrosine. The
values under each structure indicate
isolated yields. Reaction conditions:
substrate (0.1 mmol), ethyl acrylate
(0.2 mmol), Pd(OAc)2 (10 mol%),
L69 (30 mol%), AgOAc (3.0 equiv.),
HFIP (0.5 ml), 100 °C, 24 h; for 7d,
7f and 7i, the reaction time was
shortened to 16 h; for 7g, chloroform
was used instead of HFIP.
6 (1.0 equiv.)
2a (2.0 equiv.)
7
H
MeO
O
O
CO2Me
NPhth
CO2Me
H
4
NPhth
H
MeO
3
MeO2C
H
H
N-Phth-Phe-OMe
7a, 68%
3/4 = 1.0/1.1
N-Phth-Tyr-OMe
7b, 52%
[2.2]Paracyclophane
Dimethylꢁuorescein
ether ester
7c, 45%
7d, 53%
OMe
O
N
O
O
Me
O
Me
H
6
Me
N
Me
Me
N
N
iPrO2C
H
H
5
H
H
O
N
H
O
N
Me
H
H
O
Cl
Me
H
MeO
OH
O
MeO2C
Caffeine
7e, 50%
Estrone-OMe
7f, 51%
Methyl O-methylpodocarpate
7g, 58%
Camptothecin
7h, 46%
Fenoꢀbrate
7i, 56%
6/5 = 11.4/1.0
Me
O
CO2Me
OMe
O
Ts
N
H
H
3
4
O
CO2Me
N
O
H
H
O
O
H
H
5
4
O
5′
Me
2
3
F
F
O
3′
H
Gemꢀbrozil-CO2Me
7j, 47%
Diꢁunisal derivative
7k, 71%
Viloxazine-NTs
7l, 81%
Betaxolol derivative
7m, 47%
3/4 = 1.0/1.1
3′/5′ = 1.0/1.0
Di-7k′, 20%
4/5 = 1.0/1.0
2/3 = 2.5/1.0
19. Huang, C., Chattopadhyay, B. & Gevorgyan, V. Silanol: a traceless directing
group for Pd-catalyzed o-alkenylation of phenols. J. Am. Chem. Soc. 133,
12406–12409 (2011).
20. Bedford, R. B., Coles, S. J., Hursthouse, M. B. & Limmert, M. E. The catalytic
intermolecular orthoarylation of phenols. Angew. Chem. Int. Ed. 42, 112–114 (2003).
21. Zhang, F.-L., Hong, K., Li, T.-J., Park, H. & Yu, J.-Q. Functionalization of C(sp3)–H
bonds using a transient directing group. Science 351, 252–256 (2016).
22. Engle, K. M. & Yu, J.-Q. Developing ligands for palladium(II)-catalyzed C–H
functionalization: intimate dialogue between ligand and substrate. J. Org.
Chem. 78, 8927–8955 (2013).
23. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bond
assisted by an end-on template. Nature 486, 518–522 (2012).
24. Chu, L. et al. Remote meta-C–H activation using a pyridine-based template:
achieving site-selectivity via the recognition of distance and geometry.
ACS Cent. Sci. 1, 394–399 (2015).
25. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H
activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).
26. Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E. Jr & Smith, M. R. III.
Remarkably selective iridium catalysts for the elaboration of aromatic
C–H bonds. Science 295, 305–308 (2002).
received 27 March; accepted 12 September 2017.
1. Whisler, M. C., MacNeil, S., Snieckus, V. & Beak, P. Beyond thermodynamic
acidity: a perspective on the complex-induced proximity effect (CIPE) in
deprotonation reactions. Angew. Chem. Int. Ed. 43, 2206–2225 (2004).
2. Kakiuchi, F. et al. Catalytic addition of aromatic carbon–hydrogen bonds to
olefins with the aid of ruthenium complexes. Bull. Chem. Soc. Jpn 68, 62–83
(1995).
3. Daugulis, O., Do, H.-Q. & Shabashov, D. Palladium- and copper-catalyzed
arylation of carbon–hydrogen bonds. Acc. Chem. Res. 42, 1074–1086 (2009).
4. Engle, K. M., Mei, T.-S., Wasa, M. & Yu, J.-Q. Weak coordination as powerful
means for developing broadly useful C–H functionalization reactions.
Acc. Chem. Res. 45, 788–802 (2012).
5. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H
functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).
6. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond
formation via heteroatom-directed C–H bond activation. Chem. Rev. 110,
624–655 (2010).
7. Kuhl, N., Hopkinson, M. N., Wencel-Delord, J. & Glorius, F. Beyond directing
groups: transition-metal-catalyzed C–H activation of simple arenes. Angew.
Chem. Int. Ed. 51, 10236–10254 (2012).
8. Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond
functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292
(2016).
9. Moritani, I. & Fujiwara, Y. Aromatic substitution of styrene-palladium chloride
complex. Tetrahedr. Lett. 8, 1119–1122 (1967).
10. Dams, M., De Vos, D. E., Celen, S. & Jacobs, P. A. Toward waste-free production
of Heck products with a catalytic palladium system under oxygen. Angew.
Chem. Int. Ed. 42, 3512–3515 (2003).
27. Grimster, N. P., Gauntlett, C., Godfrey, C. R. A. & Gaunt, M. J. Palladium-catalyzed
intermolecular alkenylation of indoles by solvent-controlled regioselective C–H
functionalization. Angew. Chem. Int. Ed. 44, 3125–3129 (2005).
28. Ueda, K., Yanagisawa, S., Yamaguchi, J. & Itami, K. A general catalyst for the
β-selective C–H Bond arylation of thiophenes with iodoarenes. Angew. Chem.
Int. Ed. 49, 8946–8949 (2010).
29. Bedford, R. B. et al. Facile hydrolysis and alcoholysis of palladium acetate.
Angew. Chem. Int. Ed. 54, 6591–6594 (2015).
11. Yokota, T., Tani, M., Sakaguchi, S. & Ishii, Y. Direct coupling of benzene with
olefin catalyzed by Pd(OAc)2 combined with heteropolyoxometalate under
dioxygen. J. Am. Chem. Soc. 125, 1476–1477 (2003).
12. Zhang, Y.-H., Shi, B.-F. & Yu, J.-Q. Pd(II)-catalyzed olefination of electron-
deficient arenes using 2,6-dialkylpyridine ligands. J. Am. Chem. Soc. 131,
5072–5074 (2009).
Acknowledgements We acknowledge The Scripps Research Institute, the
NIH (NIGMS, 2R01 GM102265), Bristol-Myers Squibb and Shanghai RAAS
Blood Products Co., Ltd. for their financial support. We also thank Novartis for
providing the drug molecules.
Author Contributions P.W. developed the ligands and the reactions.
P.V. performed the DFT calculations. G.X. performed the kinetic study. J.S., S.T.
and P.T.W.C. separated the isomers using preparative HPLC. J.X.Q. and M.A.P.
participated in the screening of acrylamide-derived coupling partners and
investigation of the C–H olefination reaction for amino acid substrates. M.E.F.
performed preliminary studies on 2-hydroxypyridine ligands. K.-S.Y. helped with
the screening of sulphonamide-derived coupling partners. J.-Q.Y. conceived the
concept and prepared the manuscript with feedback from P.W., P.V. and G.X.
13. Kubota, A., Emmert, M. H. & Sanford, M. S. Pyridine ligands as promoters in
PdII/0-catalyzed C–H olefination reactions. Org. Lett. 14, 1760–1763 (2012).
14. Ying, C.-H., Yan, S.-B. & Duan, W.-L. 2-Hydroxy-1,10-phenanthroline vs
1,10-phenanthroline: significant ligand acceleration effects in the palladium-
catalyzed oxidative Heck reaction of arenes. Org. Lett. 16, 500–503 (2014).
15. Li, R., Jiang, L. & Lu, W. Intermolecular cross-coupling of simple arenes via C–H
activation by tuning concentrations of arenes and TFA. Organometallics 25,
5973–5975 (2006).
16. Shrestha, R., Mukherjee, P., Tan, Y., Litman, Z. C. & Hartwig, J. F. Sterically
controlled, palladium-catalyzed intermolecular amination of arenes. J. Am.
Chem. Soc. 135, 8480–8483 (2013).
17. Fujiwara, Y., Taniguchi, H. & Taniguchi, H. Palladium-promoted one-step
carboxylation of aromatic compounds with carbon monoxide. J. Chem. Soc.
Chem. Commun. 220–221 (1980).
Author Information Reprints and permissions information is available at
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations. Correspondence and
18. Yoneyama, T. & Crabtree, R. H. Pd(II) catalyzed acetoxylation of arenes with
iodosyl acetate. J. Mol. Catal. A 108, 35–40 (1996).
reviewer Information Nature thanks J. de Vries and the other anonymous
reviewer(s) for their contribution to the peer review of this work.
2 3 n o v e m b e r 2 0 1 7
| v o L 5 5 1 | n A T U r e | 4 9 3
© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.