Communication
ChemComm
Int. Ed. Engl., 1974, 13, 409–410; (c) B. M. Graybill, J. Org. Chem.,
1967, 32, 2931–2933; (d) S. J. Nara, J. R. Harjani and M. M. Salunkhe,
J. Org. Chem., 2001, 66, 8616–8620; (e) G. A. Olah, S. Kobayashi and
J. Nishimura, J. Am. Chem. Soc., 1973, 95, 564–569.
6 (a) H. Yue, C. Zhu and M. Rueping, Angew. Chem., Int. Ed., 2018, 57,
1371–1375; (b) N.-W. Liu, S. Liang, N. Margraf, S. Shaaban,
V. Luciano, M. Drost and G. Manolikakes, Eur. J. Org. Chem., 2018,
1208–1210; (c) Y. Chen and M. C. Willis, Chem. Sci., 2017, 8, 3249–3253;
(d) F. Hu and X. Lei, ChemCatChem, 2015, 7, 1539–1542; (e) X. Zhao,
´
E. Dimitrijevic and V. M. Dong, J. Am. Chem. Soc., 2009, 131,
3466–3467; ( f ) E. Emmett, B. R. Hayter and M. C. Willis, Angew. Chem.,
Int. Ed., 2013, 52, 12679–12683; (g) C. Shen, J. Xu, W. Yu and P. Zhang,
Green Chem., 2014, 16, 3007–3012; (h) W. Zhu and D. Ma, J. Org. Chem.,
2005, 70, 2696–2700.
Scheme 3 Proposed mechanism of 1a and 2a.
7 (a) Y. Zhao, H. Wang, X. Hou, Y. Hu, A. Lei, H. Zhang and L. Zhu,
J. Am. Chem. Soc., 2006, 128, 15048–15049; (b) M. Chen, X. Zheng,
W. Li, J. He and A. Lei, J. Am. Chem. Soc., 2010, 132, 4101–4103;
(c) C. Liu, D. Liu and A. Lei, Acc. Chem. Res., 2014, 47, 3459–3470;
(d) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh and
A. Lei, Chem. Rev., 2017, 117, 9016–9085; (e) J. A. Ashenhurst,
Chem. Soc. Rev., 2010, 39, 540–548; ( f ) C. S. Yeung and
V. M. Dong, Chem. Rev., 2011, 111, 1215–1292; (g) Y. Yang, J. Lan
and J. You, Chem. Rev., 2017, 117, 8787–8863.
8 (a) S.-L. Liu, X.-H. Li, S.-S. Zhang, S.-K. Hou, G.-C. Yang, J.-F. Gong
and M.-P. Song, Adv. Synth. Catal., 2017, 359, 2241–2246;
(b) J.-K. Qiu, W.-J. Hao, D.-C. Wang, P. Wei, J. Sun, B. Jiang and
S.-J. Tu, Chem. Commun., 2014, 50, 14782–14785; (c) G. Chen,
X. Zhang, Z. Zeng, W. Peng, Q. Liang and J. Liu, ChemistrySelect,
2017, 2, 1979–1982; (d) H.-S. Li and G. Liu, J. Org. Chem., 2014, 79,
509–516; (e) Y. Su, X. Zhou, C. He, W. Zhang, X. Ling and X. Xiao,
J. Org. Chem., 2016, 81, 4981–4987; ( f ) Y.-J. Guo, S. Lu, L.-L. Tian,
E.-L. Huang, X.-Q. Hao, X. Zhu, T. Shao and M.-P. Song, J. Org.
Chem., 2018, 83, 338–349; (g) F. Xiao, S. Chen, J. Tian, H. Huang,
Y. Liu and G.-J. Deng, Green Chem., 2016, 18, 1538–1546; (h) Y. Yang,
Z. Chen and Y. Rao, Chem. Commun., 2014, 50, 15037–15040;
(i) F. Xiao, H. Chen, H. Xie, S. Chen, L. Yang and G.-J. Deng,
Org. Lett., 2014, 16, 50–53.
9 (a) P. Sun, D. Yang, W. Wei, M. Jiang, Z. Wang, L. Zhang, H. Zhang,
Z. Zhang, Y. Wang and H. Wang, Green Chem., 2017, 19, 4785–4791;
(b) X. Kang, R. Yan, G. Yu, X. Pang, X. Liu, X. Li, L. Xiang and
G. Huang, J. Org. Chem., 2014, 79, 10605–10610; (c) N. Singh,
R. Singh, D. S. Raghuvanshi and K. N. Singh, Org. Lett., 2013, 15,
5874–5877; (d) X. Li, Y. Xu, W. Wu, C. Jiang, C. Qi and H. Jiang,
Chem. – Eur. J., 2014, 20, 7911–7915; (e) X. Zhao, L. Zhang, X. Lu,
T. Li and K. Lu, J. Org. Chem., 2015, 80, 2918–2924.
10 (a) X. Yu, X. Li and B. Wan, Org. Biomol. Chem., 2012, 10, 7479–7482;
(b) Y.-L. Zhu, B. Jiang, W.-J. Hao, J.-K. Qiu, J. Sun, D.-C. Wang,
P. Wei, A.-F. Wang, G. Li and S.-J. Tu, Org. Lett., 2015, 17, 6078–6081.
11 (a) A. Jutand, Chem. Rev., 2008, 108, 2300–2347; (b) J.-i. Yoshida,
A. Shimizu and R. Hayashi, Chem. Rev., 2018, 118, 4702–4730;
(c) Y. Jiang, K. Xu and C. Zeng, Chem. Rev., 2018, 118, 4485–4540;
(d) M. Yan, Y. Kawamata and P. S. Baran, Chem. Rev., 2017, 117,
13230–13319; (e) D. Pletcher, R. A. Green and R. C. D. Brown, Chem.
Rev., 2018, 118, 4573–4591; ( f ) R. Francke and R. D. Little, Chem.
Soc. Rev., 2014, 43, 2492–2521; (g) J. B. Sperry and D. L. Wright,
Chem. Soc. Rev., 2006, 35, 605–621.
hydrazides or arenes is often required to increase the probability
of radical addition.
In summary, we have disclosed an electrochemical oxidative
radical C–H sulfonylation of arenes/heteroarenes towards the
synthesis of diarylsulfones. A series of C–H sulfonylated products
were produced in moderate to high yields. During the reaction, the
constant current is utilized instead of an exogenous oxidant, and
hydrogen and nitrogen are produced as the only side-products.
Moreover, mild catalyst-free electrochemical conditions are
employed, which efficiently avoid the issues of desulfonylation
or over-reduction of sulfonyl groups.
This work was supported by the National Natural Science
Foundation of China (21390402, 21520102003, 21702150), the
China Postdoctoral Science Foundation (BX201600114,
2016M602340), and the Hubei Province Natural Science Foun-
dation of China (2017CFA010). The Program of Introducing
Talents of Discipline to Universities of China (111 Program) is
also acknowledged. This paper is dedicated to Professor Xiyan
Lu on the occasion of his 90th birthday.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) H. Yang, R. G. Carter and L. N. Zakharov, J. Am. Chem. Soc., 2008,
130, 9238–9239; (b) P. J. Crowley, J. Fawcett, B. M. Kariuki,
A. C. Moralee, J. M. Percy and V. Salafia, Org. Lett., 2002, 4, 4125–4128.
2 (a) S. Yazdanyar, J. Boer, G. Ingvarsson, J. C. Szepietowski and
G. B. E. Jemec, Dermatology, 2011, 222, 342–346; (b) R. A. Hartz,
A. G. Arvanitis, C. Arnold, J. P. Rescinito, K. L. Hung, G. Zhang, 12 (a) A. Badalyan and S. S. Stahl, Nature, 2016, 535, 406–410;
H. Wong, D. R. Langley, P. J. Gilligan and G. L. Trainor, Bioorg. Med.
Chem. Lett., 2006, 16, 934–937; (c) T. Otzen, E. G. Wempe, B. Kunz,
(b) P. Xiong, H.-H. Xu and H.-C. Xu, J. Am. Chem. Soc., 2017, 139,
2956–2959; (c) N. Fu, G. S. Sauer, A. Saha, A. Loo and S. Lin, Science,
2017, 357, 575–579; (d) Q.-L. Yang, Y.-Q. Li, C. Ma, P. Fang,
X.-J. Zhang and T.-S. Mei, J. Am. Chem. Soc., 2017, 139,
3293–3298; (e) Y. Qiu, W.-J. Kong, J. Struwe, N. Sauermann,
T. Rogge, A. Scheremetjew and L. Ackermann, Angew. Chem.,
Int. Ed., 2018, 57, 5828–5832; ( f ) Y. Zhao, Y.-L. Lai, K.-S. Du,
D.-Z. Lin and J.-M. Huang, J. Org. Chem., 2017, 82, 9655–9661;
(g) M.-L. Feng, L.-Y. Xi, S.-Y. Chen and X.-Q. Yu, Eur. J. Org. Chem.,
2017, 2746–2750.
¨
R. Bartels, G. Lehwark-Yvetot, W. Hansel, K.-J. Schaper and
J. K. Seydel, J. Med. Chem., 2004, 47, 240–253.
3 (a) M. Feng, B. Tang, S. H. Liang and X. Jiang, Curr. Top. Med. Chem.,
2016, 16, 1200–1216; (b) H. Liu and X. Jiang, Chem. – Asian J., 2013, 8,
2546–2563; (c) W. M. Wolf, J. Mol. Struct., 1999, 474, 113–124;
(d) M. Artico, R. Silvestri, E. Pagnozzi, B. Bruno, E. Novellino, G. Greco,
S. Massa, A. Ettorre, A. G. Loi, F. Scintu and P. La Colla, J. Med. Chem.,
2000, 43, 1886–1891; (e) M. Artico, R. Silvestri, S. Massa, A. G. Loi,
S. Corrias, G. Piras and P. La Colla, J. Med. Chem., 1996, 39, 522–530.
4 (a) K. Sato, M. Hyodo, M. Aoki, X.-Q. Zheng and R. Noyori, Tetrahedron,
2001, 57, 2469–2476; (b) A. Ivachtchenko, E. Golovina, M. Kadieva,
O. Mitkin, S. Tkachenko and I. Okun, Bioorg. Med. Chem., 2013, 21,
4614–4627.
13 (a) S. Tang, Y. Liu and A. Lei, Chem, 2018, 4, 27–45; (b) P. Huang,
P. Wang, S. Tang, Z. Fu and A. Lei, Angew. Chem., Int. Ed., 2018, 57,
8115–8119; (c) X. Gao, P. Wang, L. Zeng, S. Tang and A. Lei, J. Am.
Chem. Soc., 2018, 140, 4195–4199; (d) S. Tang, S. Wang, Y. Liu,
H. Cong and A. Lei, Angew. Chem., Int. Ed., 2018, 57, 4737–4741;
(e) P. Wang, S. Tang, P. Huang and A. Lei, Angew. Chem., Int. Ed.,
2017, 56, 3009–3013.
5 (a) K. P. Borujeni and B. Tamami, Catal. Commun., 2007, 8,
1191–1196; (b) F. Effenberger and K. Huthmacher, Angew. Chem.,
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2018