Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
In conclusion, a functionalized pillar[5]arene analogue, i.e., R, 22. T. Ogoshi, R. Sueto, K. Yoshikoshi, Y. Sakata, S. Akine and T.-a.
Yamagishi, Angew. Chem. Int. Ed., 2015D, 5O4I:,1908.14093V-99ie/8wC59A2Crt.iCcl0e1O9n4li7nBe
23. X.-S. Du, C.-Y. Wang, Q. Jia, R. Deng, H.-S. Tian, H.-Y. Zhang, K.
Meguellati and Y.-W. Yang, Chem. Commun., 2017, 53, 5326-
5329.
24. M. Wang, X. Du, H. Tian, Q. Jia, R. Deng, Y. Cui, C. Wang and K.
was designed and applied in the stabilization of aliphatic imines and
hemiaminals in the solution states, as traced by LC-MS. Some model
aldehydes were chosen, and the binding constants between
aldehydes and DEP5A were measured, where G3 was confirmed
with a slight higher association (ca. 49 M-1). The dynamic studies of
Meguellati, Chin. Chem. Lett., 2019, 30, 345-348.
the reactions between the aldehydes and PA in the presence of
DEP5A or its monomer, 1,4-diethoxybenzene, comparatively
concluded that the cavity of DEP5A plays a significant role. Finally,
we investigated the reaction of a series of aldehydes and R, in
which G3 was the only one that could selectively react. We further
expanded the reactions of R and other different aliphatic aldehydes
with variable space effects, G4, G5 and G6, and the expected active
imines and hemiaminals were observed by LC-ESI-MS. This work
gives access to a promising application of functional synthetic
macrocycles in rational design and molecule screening by both non-
covalent and covalent interactions.
25. Q. Jia, X. Du, C. Wang and K. Meguellati, Chin. Chem. Lett.,
2019, 30, 721-724.
26. P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K. M.
Sanders and S. Otto, Chem. Rev., 2006, 106, 3652-3711.
27. F. B. L. Cougnon and J. K. M. Sanders, Acc. Chem. Res., 2012,
45, 2211-2221.
28. A. Herrmann, Chem. Soc. Rev., 2014, 43, 1899-1933.
29. Q. Ji, R. C. Lirag and O. S. Miljanic, Chem. Soc. Rev., 2014, 43,
1873-1884.
30. Y. Jin, C. Yu, R. J. Denman and W. Zhang, Chem. Soc. Rev., 2013,
42, 6634-6654.
31. J. M. Lehn, Chem. Eur. J., 1999, 5, 2455-2463.
32. J.-M. Lehn and A. V. Eliseev, Science, 2001, 291, 2331-2332.
33. M. Mondal and A. K. H. Hirsch, Chem. Soc. Rev., 2015, 44, 2455-
2488.
34. E. Moulin, G. Cormos and N. Giuseppone, Chem. Soc. Rev.,
2012, 41, 1031-1049.
We acknowledge the National Natural Science Foundation of
China (21871108), the Jilin Province-University Cooperative
Construction Project—Special Funds for New Materials
(SXGJSF2017-3), NMAC, and Jilin University for financial support.
35. N. Giri, M. G. Del Pópolo, G. Melaugh, R. L. Greenaway, K.
Rätzke, T. Koschine, L. Pison, M. F. C. Gomes, A. I. Cooper and
S. L. James, Nature, 2015, 527, 216.
36. M. E. Belowich and J. F. Stoddart, Chem. Soc. Rev., 2012, 41,
2003-2024.
Notes and references
1. T. Ogoshi, S. Kanai, S. Fujinami, T.-a. Yamagishi and Y.
Nakamoto, J. Am. Chem. Soc., 2008, 130, 5022-5023.
2. H. Zhang, X. Ma, K. T. Nguyen and Y. Zhao, ACS Nano, 2013, 7,
7853-7863.
37. N. E. Hall and B. J. Smith, J. Phy. Chem. A, 1998, 102, 4930-
3. W. Feng, M. Jin, K. Yang, Y. Pei and Z. Pei, Chem. Commun.,
2018, 54, 13626-13640.
4. H. Zhang, Z. Liu and Y. Zhao, Chem. Soc. Rev., 2018, 47, 5491-
5528.
5. N. Song and Y.-W. Yang, in Pillararenes, Ed. T. Ogoshi, The
Royal Society of Chemistry, 2016, pp. 229-262.
6. J.-F. Chen, Q. Lin, Y.-M. Zhang, H. Yao and T.-B. Wei, Chem.
Commun., 2017, 53, 13296-13311.
7. C. Sathiyajith, R. R. Shaikh, Q. Han, Y. Zhang, K. Meguellati and
Y.-W. Yang, Chem. Commun., 2017, 53, 677-696.
8. W. Si, P. Xin, Z.-T. Li and J.-L. Hou, Acc. Chem. Res., 2015, 48,
1612-1619.
9. N. Song and Y.-W. Yang, Chem. Soc. Rev., 2015, 44, 3474-3504.
10. Y.-W. Yang, Y.-L. Sun and N. Song, Acc. Chem. Res., 2014, 47,
1950-1960.
11. N. Song, T. Kakuta, T.-a. Yamagishi, Y.-W. Yang and T. Ogoshi,
Chem, 2018, 4, 2029-2053.
12. T. Ogoshi, T.-a. Yamagishi and Y. Nakamoto, Chem. Rev., 2016,
116, 7937-8002.
13. X. Yan, B. Zheng and F. Huang, Polym. Chem., 2013, 4, 2395-
4938.
38. A. Heine, G. DeSantis, J. G. Luz, M. Mitchell, C.-H. Wong and I.
A. Wilson, Science, 2001, 294, 369-374.
39. T. Haneda, M. Kawano, T. Kawamichi and M. Fujita, J. Am.
Chem. Soc., 2008, 130, 1578-1579.
40. T. Kawamichi, T. Haneda, M. Kawano and M. Fujita, Nature,
2009, 461, 633.
41. W. Morris, C. J. Doonan and O. M. Yaghi, Inorg. Chem., 2011,
50, 6853-6855.
42. R. J. Hooley, T. Iwasawa and J. Rebek, J. Am. Chem. Soc., 2007,
129, 15330-15339.
43. T. Iwasawa, R. J. Hooley and J. Rebek, Science, 2007, 317, 493-
496.
44. L. Xu, S. Hua and S. Li, Chem. Commun., 2013, 49, 1542-1544.
45. Y. Han, G.-F. Huo, J. Sun, J. Xie, C.-G. Yan, Y. Zhao, X. Wu, C. Lin
and L. Wang, Sci. Rep., 2016, 6, 28748.
46. J. Li, P. Nowak and S. Otto, J. Am. Chem. Soc., 2013, 135, 9222-
9239.
47. X. Lou, H. Chen, X. Jia and C. Li, Chin. J. Chem., 2015, 33, 335-
338.
48. V. T. Bhat, A. M. Caniard, T. Luksch, R. Brenk, D. J. Campopiano
and M. F. Greaney, Nat. Chem., 2010, 2, 490.
49. A. Dirksen, S. Dirksen, T. M. Hackeng and P. E. Dawson, J. Am.
Chem. Soc., 2006, 128, 15602-15603.
50. A. Dirksen, T. M. Hackeng and P. E. Dawson, Angew. Chem. Int.
Ed., 2006, 45, 7581-7584.
51. K. Rohr and R. Mahrwald, Org. Lett., 2012, 14, 2180-2183.
52. S. Yamago, D. Machii and E. Nakamura, J. Org. Chem., 1991, 56,
2098-2106.
2399.
14. Z. Zhang, C. Han, G. Yu and F. Huang, Chem. Sci., 2012, 3, 3026-
3031.
15. P. J. Cragg and K. Sharma, Chem. Soc. Rev., 2012, 41, 597-607.
16. N. Song and Y.-W. Yang, Sci. China Chem., 2014, 57, 1185-1198.
17. N. L. Strutt, H. Zhang, S. T. Schneebeli and J. F. Stoddart, Acc.
Chem. Res., 2014, 47, 2631-2642.
18. Y. Wang, G. Ping and C. Li, Chem. Commun., 2016, 52, 9858-
9872.
19. M. Xue, Y. Yang, X. Chi, Z. Zhang and F. Huang, Acc. Chem. Res.,
2012, 45, 1294-1308.
53. L. Ratjen, G. Vantomme and J. M. Lehn, Chem. Eur. J., 2015, 21,
10070-10081.
20. X. Li, Z. Li and Y.-W. Yang, Adv. Mater., 2018, 30, 1800177.
21. Z. Li, X. Li and Y.-W. Yang, Small, 2019, 15, 1805509.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins