Journal of the American Chemical Society
Communication
partial oxidation of TiN in the nanohybrid at elevated
temperatures (Figure 1), together with the oxidative stability
of Ni, suggests an electron transfer from the Ni to the TiN. As
both component are metals and structurally tightly bonded,
electrons will flow from the less noble (Ni) to the more noble
(TiN) side of the composite in order to equilibrate the Fermi
levels.23 The resulting electron-deficient Ni, for instance, might
more effectively coordinate the oxygen of ether linkages and
activate them for hydrogenation, while accelerating the hydride
transfer to the arene during reductive elimination. Nevertheless,
a classical binary catalysis scheme in which ether linkages are
activated by available Ti-coordination sites on the TiN
substructure and hydrogen is activated by Ni cannot be
excluded. Finally, a possible templating effect in which TiN
could favor the formation of Ni particles with optimal
morphology and site density remains to be elucidated. A
more detailed reaction mechanism will be provided on the basis
of additional studies.
In conclusion, we introduced a new TiN-Ni nanocomposite
composed of spherical intergrown core−shell nanoparticles of
∼10 nm in diameter, as estimated both via XRD and HR-TEM.
This novel material was synthesized on a multigram scale and
proved to be stable at room temperature both in air and in
solvent for several months. The close contact between TiN and
Ni was observed both via peak position and intensity changes in
the corresponding XRD pattern. Furthermore, a different
chemical behavior and catalytic activity was observed with
respect to pure Ni and TiN. While simple Ni particles were
found to be less efficient for the reductive splitting or
hydrogenolysis of lignin model molecules, a superior catalytic
activity of the TiN-Ni nanocomposite was shown, even with the
very recalcitrant diphenyl ether linkages.
REFERENCES
■
(1) Boerjan, W.; Ralph, J.; Baucher, M. Annu. Rev. Plant Biol. 2003,
54, 519.
(2) Marshall, A.-L.; Alaimo, P. J. Chem.Eur. J. 2010, 16, 4970.
(3) Wang, X.; Rinaldi, R. ChemSusChem 2012, 5, 1455.
(4) Laskar, D. D.; Yang, B.; Wang, H.; Lee, J. Biofuels, Bioprod.
Biorefin. 2013, 7, 602.
(5) Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B.
M. Chem. Rev. 2010, 110, 3552.
(6) Michael Robinson, J.; E. Burgess, C.; A. Bently, M.; D. Brasher,
C.; O. Horne, B.; M. Lillard, D.; M. Macias, J.; D. Mandal, H.; C. Mills,
S.; D. O’Hara, K.; T. Pon, J.; F. Raigoza, A.; H. Sanchez, E.; Villarreal,
S. J. Biomass Bioenergy 2004, 26, 473.
(7) Pepper, J. M.; Hibbert, H. J. Am. Chem. Soc. 1948, 70, 67.
(8) Pepper, J. M.; Lee, Y. W. Can. J. Chem. 1969, 47, 723.
(9) Alonso, F.; Riente, P.; Yus, M. Acc. Chem. Res. 2011, 44, 379.
(10) Sergeev, A. G.; Hartwig, J. F. Science 2011, 332, 439.
(11) Sergeev, A. G.; Webb, J. D.; Hartwig, J. F. J. Am. Chem. Soc.
2012, 134, 20226.
(12) Wang, X. Y.; Rinaldi, R. Energy Environ. Sci. 2012, 5, 8244.
(13) Wang, X.; Rinaldi, R. Angew. Chem., Int. Ed. 2013, 52, 11499.
(14) Toledano, A.; Serrano, L.; Balu, A. M.; Luque, R.; Pineda, A.;
Labidi, J. ChemSusChem 2013, 6, 529.
(15) He, J.; Zhao, C.; Lercher, J. A. J. Am. Chem. Soc. 2012, 134,
20768.
(16) Toledano, A.; Serrano, L.; Labidi, J.; Pineda, A.; Balu, A. M.;
Luque, R. ChemCatChem 2013, 5, 977.
(17) Levy, R. B.; Boudart, M. Science 1973, 181, 547.
(18) Hwu, H. H.; Chen, J. G. Chem. Rev. 2004, 105, 185.
(19) Villa, A.; Campisi, S.; Giordano, C.; Otte, K.; Prati, L. ACS
Catal. 2012, 2, 1377.
(20) Ji, N.; Zhang, T.; Zheng, M.; Wang, A.; Wang, H.; Wang, X.;
Chen, J. G. Angew. Chem., Int. Ed. 2008, 47, 8510.
(21) Yao, W.; Makowski, P.; Giordano, C.; Goettmann, F. Chem.
Eur. J. 2009, 15, 11999.
The nanocomposite worked as an efficient catalyst in a fixed
bed reactor, and using ethanol as an environmentally benign
solvent afforded high conversions in very short reaction times.
These promising results open the way to new competitive
lignin refining strategies based on relatively cheap and abundant
materials like Ti and Ni. A detailed investigation of the reaction
mechanism including the influence of other solvents will be the
subject of future studies. Finally, this work anticipates the
development of an extended family of new catalysts, whose
activity is based on the interaction of early transition-metal
nitrides with Ni, which can find application in different fields of
catalysis.
(22) Esposito, D. V.; Hunt, S. T.; Kimmel, Y. C.; Chen, J. G. J. Am.
Chem. Soc. 2012, 134, 3025.
(23) Li, X.-H.; Antonietti, M. Chem. Soc. Rev. 2013, 42, 6593.
(24) Hammerle, H.; Kobuch, K.; Kohler, K.; Nisch, W.; Sachs, H.;
̈
Stelzle, M. Biomaterials 2002, 23, 797.
(25) Birkholz, M.; Ehwald, K. E.; Wolansky, D.; Costina, I.;
Baristiran-Kaynak, C.; Frohlich, M.; Beyer, H.; Kapp, A.; Lisdat, F.
̈
Surf. Coat. Technol. 2010, 204, 2055.
(26) Heide, N.; Schultze, J. W. Nucl. Instrum. Methods Phys. Res., Sect.
B 1993, 80−81 (Part1), 467.
(27) Marlo, M.; Milman, V. Phys. Rev. B 2000, 62, 2899.
(28) Giordano, C.; Erpen, C.; Yao, W.; Milke, B.; Antonietti, M.
Chem. Mater. 2009, 21, 5136.
ASSOCIATED CONTENT
■
S
* Supporting Information
Additional experimental and characterization details. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We gratefully thank Dr. Guylhaine Clavel for TEM measure-
ments and fruitful discussion and the Max Planck-Fraunhofer
cooperation scheme for financial support.
1761
dx.doi.org/10.1021/ja4119412 | J. Am. Chem. Soc. 2014, 136, 1758−1761