10.1002/chem.201702070
Chemistry - A European Journal
COMMUNICATION
R1
R1
R1
O
synthesis of a variety of 3-alkyl-b-lactams. Further elaboration of
the chiral catalyst system is underway in our laboratory.
O
O
KOtBu (15 mol%)
(1)
+
N
N
N
THF
Ph
Ph
Cy
Ph
Cy
Cy
cis-(3R,4S)-3 trans-(3S,4S)-3
trans-(3S,4S)-3
Acknowledgements
3ha: R1 = nBu, 93% yield, 97% ee (r.t., 1 h)
3ka: R1 = Cy; 96% yield, 96% ee (50 °C, 6 h)
3na: R1 = 2-(1,3-dioxane-2-yl)ethyl, 93% yield, 97% ee (r.t., 1 h)
This work was supported by CREST and ACT-C
(JPMJCR12YN), JST to M.S. Y.T. thanks JSPS for scholarship
support.
Our scenario for the catalytic asymmetric Kinugasa reaction is
illustrated in Figure 3. We propose that Cu(OTf)2 is first reduced
to a Cu(I) species in the reaction mixture containing potential
reducing agents such as the terminal alkyne and Et2NH. A
Keywords: asymmetric catalysis · cooperative catalysis ·
copper · nitrone · b-lactam
P,N,O-bound copper(I)–alkyne complex forms
a hydrogen-
bonded complex (A) with Et2NH. Proton relay through Et2NH in
A leads to C(sp)–H activation of terminal alkyne 1 to form
copper acetylide B with a Cu-bound OH group. Nitrone 2 is
[1]
For books on the biological activity of b-lactams, see: a) The Chemistry
of b-Lactams (Ed.: M. I. Page), Blackie Academic & Professional, New
York, 1992; b) Chemistry and Biology of b-Lactam Antibiotics, Vol. 1–3
(Eds.: R. B. Morin, M. Gorman), Academic Press, New York, 1982.
For books on the synthetic chemistry of b-lactams, see: a) Synthesis of
b-Lactam Antibiotics: Chemistry, Biocatalysis and Process Integration
(Ed.: A. Bruggink), Kluwer, Dordrecht, Netherlands, 2001; b)
Enantioselective Synthesis of b-Amino Acids (Ed.: E. Juaristi), VCH,
New York, 1997; c) The Organic Chemistry of b-Lactams (Ed.: G. I.
Georg), VCH, New York, 1993. For a review, see: d) C. Ro. Pitts, T.
Lecka, Chem. Rev. 2014, 114, 7930–7953.
captured by
B
through O–H···O/C(sp3)–H···O two-point-
hydrogen-bonding to form complex C.[10,11] Subsequent C–C
bond formation may occur in a stepwise manner rather than a
[3+2] cycloaddition manner because the oxyanion is hydrogen-
bonded.[14, 15] In the transition state [TS (C-D)] for bond formation
between the alkyne carbon b to Cu and the nitrone imino carbon,
the steric repulsion between the substituent of the alkyne (R)
and the N-aryl group (Ar’) should be minimized. We propose this
stereochemical model based on the observation that more
sterically demanding N-substituents such as o-tolyl and 1-
naphthyl groups gave better enantioselectivities (Table 2, entries
3 and 4; Table 3, entries 4 and 5). Next, C–C-bonded product D
undergoes a second bond formation between the oxyanion and
the acetylide carbon a to Cu to give a five-membered N,O-
heterocyclic organocopper intermediate (E). Rearrangement of
E accompanied by diastereoselective protodemetalation and re-
coordination of the alkyne 1 produces b-lactam 3 and A. The
major diastereomer with the cis-configuration should result from
protonation from the less hindered diastereotopic face. This
rearrangement/protodemetalation may demand an additional
Et2NH molecule.
[2]
[3]
[4]
[5]
M. Kinugasa, S. Hashimoto, J. Chem. Soc., Chem. Commun. 1972,
466–467.
M. Miura, M. Enna, K. Okuro, M. Nomura, J. Org. Chem. 1995, 60,
4999–5004.
For reviews on the asymmetric Kinugasa reaction, see: a) S. R.
Chemler, P. H. Fuller, Chem. Soc. Rev. 2007, 36, 1153–1160; b) R. Pal,
S. C. Ghosh, K. Chandra, A. Basak, Synlett 2007, 2321–2330; c) L. M.
Stanley, M. P. Sibi, Chem. Rev. 2008, 108, 2887–2902; d) S. Stecko, B.
Furman, M. Chmielewski, Tetrahedron, 2014, 70, 7817–7844.
a) M. M.-C. Lo, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 4572–4573; b)
R. Shintani, G. C. Fu, Angew. Chem. Int. Ed. 2003, 42, 4082–4085; c)
M..-C. Ye, J. Zhou, Z.-Z. Huang, Y. Tang, Chem. Commun. 2003, 2554–
2555; d) J.-H. Chen, S.-H. Liao, X.-L. Sun, Q. Shen, Y. Tang,
Tetrahedron, 2012, 68, 5042–5045; e) M.-C. Ye, J. Zhou, Y. Tang, J.
Org. Chem. 2006, 71, 3576–3582. f) Z. Chen, L. Lin, M. Wang, X. Liu,
X. Feng, Chem. Eur. J. 2013, 19, 7561–7567; g) T. Saito, T. Kikuchi, H.
Tanabe, J. Yahiro, T. Otani, Tetrahedron Lett. 2009, 50, 4969–4972; h)
A. G. Coyne, H. Müller-Bunz, P. J. Guiry, Tetrahedron: Asymm. 2007,
18, 199–207; i) B. Baeza, L. Casarrubios, M. A. Sierra, Chem. Eur. J.
2013, 19, 11536–11540.
[6]
The significant difference in enantiomeric purities between the
cis- and trans-b-lactams observed in the reactions of aryl- or
alkenylacetylenes (Tables 1 and 2) is curious. This suggests
reversibility of the C–C bond formation step or the existence of
different reaction pathways.
[7]
[8]
[9]
For diastereoselective Kinugasa reactions, see: a) M. Maciejeko, S.
Stecko, O. Staszewska-Krajewska, M. Jurczak, B. Furman, M.
Chemielewski, Synthesis 2012, 44, 2825–2839; b) X. Zhang, R. P.
Hsung, H. Li, Y. Zhang, W. L. Johnson, R. Figueroa, Org. Lett. 2008,
10, 3477–3479.
SinPr3
SinPr3
SinPr3
Et
NHEt2
H
H
H
H
NHEt2
Ar2
P
H
Ar2
P
H
N
Ar2
P
H
Et
H
O
H
–
O
O
O
Ar'
+
N
H
Cu
Cu
Cu
H
H
N
–O
R2
Ar'
H
N
+
R2
N
R1
N
R1
R1
R1
R2
For selected reports on the synthesis of b-lactam cholesterol absorption
inhibitors and their biological activities: a) D. A. Burnett, Tetrahedron
Lett. 1994, 35, 7339–7342; b) G. Wu, Y. Wong, X. Chen, Z. Ding, J.
Org. Chem. 1999, 64, 3714–3718; c) J. W. Clader, J. Med. Chem.
2004, 47, 1–9.
A
B
C
O
2
N
R1
SinPr3
H
Ar'
3
1
SinPr3
NHEt2
SinPr3
NHEt2
H
H
H
NHEt2
Ar2
P
Ar2
P
Ar2
P
O
H
O
H
O
H
–
–
O
The first synthesis of biapenem: Y. Nagao, Y. Nagase, T. Kumagai, H.
Matsunaga, T. Abe, O. Shimada, T. Hayashi, Y. Inoue, J. Org. Chem.
1992, 57, 4243–4249.
δ
+
H
O
H
H
Ar'
Cu
O
Cu
Cu
N
N
Ar'
H
H
Ar'
N
R2
R2
N
N
N
+
δ
+
H
H
H
R1
R2
[10] (a) T. Ishii, R. Watanabe, T. Moriya, H. Ohmiya, S. Mori, M. Sawamura,
Chem. Eur. J. 2013, 19, 13547–13553. (b) Y. Asano, K. Hara, H. Ito, M.
Sawamura, Org. Lett. 2007, 9, 3901–3904. (c) Y. Asano, H. Ito, K. Hara,
M. Sawamura, Organometallics 2008, 27, 5984–5996.
R1
TS (C-D)
E
R1
D
Figure 3. A scenario for the catalytic enantiocontrolled Kinugasa reaction.
In summary, prolinol-phosphine chiral ligands served as
efficient catalysts for the asymmetric Kinugasa reaction. While
limited applicability toward C-arylnitrones remains an issue, high
enantioselectivities were attained in the reaction of C-
alkylnitrones not only with aryl- or alkenylacetylenes but also
with alkylacetylenes. This new protocol for the Kinugasa reaction
with alkylacetylenes enabled straightforward asymmetric
[11] (a) R. C.Johnston, P. H.-Y. Cheong, Org. Biomol. Chem. 2013, 11,
5057–5064. (b) Y. Gu, T. Kar, S. Scheiner, J. Am. Chem. Soc. 1999,
121, 9411–9422. (c) P. Chakrabarti, S. Chakrabarti, J. Mol. Biol. 1998,
284, 867–873. (d) Z. S. Derewenda, L. Lee, U. Derewenda, J. Mol. Biol.
1995, 252, 248–262.
[12] J. Kim, S. S. Stahl, J. Org. Chem. 2015, 80, 2448–2454.
[13] Vibrational circular dichroism was used to determine absolute
configurations of 4-alkyl-b-lactams: He, Y.; Wang, B.; Dukor, R. K.;
This article is protected by copyright. All rights reserved.