Communications
[1] J. Hassan, M. Sꢂvignon, C. Gozzi, E. Sculz, M. Lemaire, Chem.
Rev. 2002, 102, 1359.
[2] For the palladium-catalyzed dimerization of aryl halides, see:
a) D. D. Hennings, T. Iwama, V. H. Rawal, Org. Lett. 1999, 1,
1205; b) J. Hassan, V. Penalva, L. Lavenot, C. Gozzi, M.
Lemaire, Tetrahedron 1998, 54, 13793; c) F.-T. Luo, A. Jeeva-
nandam, M. K. Basu, Tetrahedron Lett. 1998, 39, 7939.
[3] For palladium-catalyzed cross-coupling reactions, see: a) T. N.
Mitchell in Metal-Catalyzed Cross-Coupling Reactions (Ed.: F.
Diederich, P. J. Stang), Wiley-VCH, New York, 1998, chap. 4;
b) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457; c) E.
Negishi, Acc. Chem. Res. 1982, 15, 340.
[4] a) R. Hong, R. Hoen, J. Zhang, G. Lin, Synlett 2001, 1527;
b) M. F. Semmelhack, P. Helquist, L. D. Jones, L. Keller, L.
Mendelson, L. S. Ryono, J. G. Smith, R. D. Stauffer, J. Am.
Chem. Soc. 1981, 103, 6461.
[5] a) P. E. Fanta, Synthesis 1974, 9; for a recent application, see:
b) A. I. Meyers, T. D. Nelson, H. Moorlag, D. J. Rawson, A.
Meier, Tetrahedron 2004, 60, 4459.
[6] a) Oxidative coupling, for example: B. Kramer, A. Averhoff,
S. R. Waldvogel, Angew. Chem. 2002, 114, 3103; Angew. Chem.
Int. Ed. 2002, 41, 2981; b) Ullmann-type coupling, for example:
S. Zhang, D. Zhang, L. S. Liebeskind, J. Org. Chem. 1997, 62,
2312; c) radical coupling: H. Tanaka, M. Doi, H. Shimizu, H.
Etoh, Heterocycles 1999, 51, 2415; d) reductive coupling: S.
Miyake, A. Sasaki, T. Ohta, K. Shudo, Tetrahedron Lett. 1985, 26,
5815.
Scheme 3. Synthesis of 2m, a model for the highly strained, medium-
ring core of sanguiin H-5.
family of natural products. The success of this reaction in
forming biaryl bonds in hindered systems and strained rings
may be because the two aryl moieties that eventually bond in
the intermediate organocuprate are a considerable distance
apart. The C-Cu-C bond angle is approximately 1808 and the
[23]
À
C Cu bond is somewhat long at 1.9 ꢀ, thereby reducing
unfavorable interactions.
In summary, we report a new functional-group-tolerant
methodology for the synthesis of sterically hindered biaryls,
including highly strained medium-ring-containing biaryls,
which are key structural units within the ellagitannin family
of natural products. The methodology can also be used to
cross-couple different aryl units by use of a tether. We are
currently working towards exploiting this methodology in the
synthesis of ellagitannin natural products.
[7] K. Khanbabaee, T. van Ree, Synthesis 2001, 1585.
[8] a) W. Su, S. Urgaonkar, P. M. McLaughlin, J. G. Verkade, J. Am.
Chem. Soc. 2004, 126, 16433; b) G. Altenhoff, R. Goddard, C. W.
Lehmann, F. Glorius, J. Am. Chem. Soc. 2004, 126, 15195; c) J. E.
Milne, S. L. Buchwald, J. Am. Chem. Soc. 2004, 126, 13028;
d) A. N. Cammidge, K. V. L. Crꢂpy, Tetrahedron 2004, 60, 4377;
e) C. Dai, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 2719.
[9] a) Direct iodination: P. C. Anelli, M. Brochetta, C. Maffezzoni,
P. Paoli, P. Rossi, F. Uggeri, M. Visigalli, Perkin Trans. 1 2001,
1175; b) from a diazonium salt: B. Ghebremariam, S. Matile,
Tetrahedron Lett. 1998, 39, 5335; c) from an aryne: H. Hart, K.
Harada, C.-J. F. Du, J. Org. Chem. 1985, 50, 3104; d) oxidative
coupling: D. Mirk, A. Willner, R. Frꢃlich, S. R. Waldvogel, Adv.
Synth. Catal. 2004, 346, 675, and references therein.
[10] a) For the first detailed studies, see: G. M. Whitesides, J.
SanFilippo, Jr., C. P. Casey, E. P. Panek, J. Am. Chem. Soc.
1967, 89, 5302; b) for an example of their use as an aggregation
probe, see: W. H. Mandeville, G. M. Whitesides, J. Org. Chem.
1974, 39, 400; c) for the oxidation of organocuprates under
“kinetic” conditions, see: B. H. Lipshutz, K. Siegmann, E.
Garcia, F. Kayser, J. Am. Chem. Soc. 1993, 115, 9276, and
references therein; e) for a recent application in crystal engi-
neering, see: Y. Morita, T. Murata, S. Yamada, M. Tadokoro, A.
Ichimura, K. Nakasuji, J. Chem. Soc. Perkin Trans. 1 2002, 2598.
[11] a) B. H. Lipshutz, F. Kayser, Z.-P. Liu, Angew. Chem. 1994, 106,
1962; Angew. Chem. Int. Ed. Engl. 1994, 33, 1844; b) D. R.
Spring, S. Krishnan, H. E. Blackwell, S. L. Schreiber, J. Am.
Chem. Soc. 2002, 124, 1354; c) T. Sugimura, H. Yamada, S. Inoue,
A. Tai, Tetrahedron: Asymmetry 1997, 8, 649; d) A.-C. Carbon-
nelle, E. G. Zamora, R. Beugelmans, G. Roussi, Tetrahedron
Lett. 1998, 39, 4471; e) S. M. H. Kabir, M. Iyoda, Chem.
Commun. 2000, 2329.
Experimental Section
General procedure for the biaryl bond-forming reaction: Titrated
iPrMgCl (1 mmol, 2.0m solution in THF) was added to a solution of
an aryl iodide (1 mmol) in THF (3 mL) at À208C. The reaction
mixture was then stirred for 10 min at À208C and then transferred by
cannula onto freshly recrystallized, solid CuBr·SMe2 (0.5 mmol).
After stirring the reaction mixture for 30 s, a solution of 3 (1 mmol) in
THF (3 mL) was added and the resulting solution was warmed to
ambient temperature. The reaction mixture was then filtered through
a plug of silica by using a mixture of hexane and EtOAc (1:1) as the
eluant. The filtrate was concentrated under reduced pressure and the
residue purified by flash column chromatography on silica gel.
3: 3,5-Dinitrobenzoic acid (21.2 g, 0.1 mol) was dissolved in
thionyl chloride (100 mL), heated at reflux for 10 h, and then cooled
to ambient temperature. Excess thionyl chloride was removed under
reduced pressure and by azeotropic distillation with toluene. The
residue was dissolved in CHCl3 (200 mL) and added dropwise to a
stirred slurry of 1-methylpiperazine (12.0 g, 0.12 mol) and K2CO3
(14 g, 0.1 mol) in CHCl3 (200 mL) at 08C. The reaction mixture was
warmed to ambient temperature over 1 h, washed with water (4 ꢁ
400 mL), dried over K2CO3, filtered, and the solvent removed under
reduced pressure. The residue was recrystallized from hexane as
yellow needles (20.4 g, 70%); m.p. 138–1418C; IR (film): n˜ = 1633,
1531, 1435, 1339, 1295, 1277, 1133, 995, 917, 908, 720, 681 cmÀ1
;
1H NMR (500 MHz; [D6]DMSO; 1208C): d = 8.87 (t, J = 2.0 Hz, 1H),
8.56 (d, J = 2.0 Hz, 2H), 3.54 (br, 4H), 2.42 (t, J = 5.0 Hz, 4H),
2.27 ppm (3H, s); 13C NMR (125 MHz; [D6]DMSO; 1208C): d
= 165.5, 149.1, 139.8, 127.6, 119.4, 54.7, 45.7 ppm; HRMS (ESI)
[MH]+ m/z = 295.1042, [C12H15N4O5]+ calcd m/z = 295.1043.
Received: November 17, 2004
Published online: February 9, 2005
[12] A. E. Jensen, W. Dohle, I. Sapountzis, D. M. Lindsay, V. A. Vu, P.
Knochel, Synthesis 2002, 565, and references therein.
[13] CuCN, CuSCN, and CuI gave comparable but lower yields.
[14] S. H. Bertz, C. P. Gibson, J. Am. Chem. Soc. 1986, 108, 8286.
[15] Other oxidants, such as FeCl3, [Fe(acac)3] (acac = acetylace-
tone), CuCl2, LiCuCl3, CrCl2, LiNO3, CeSO4, 2,3-dichloro-5,6-
À
Keywords: biaryls · C C coupling · medium-ring compounds ·
organocuprates · oxidation
.
1872
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 1870 –1873