Full Paper
(s, 3H), 0.78 (d, J=5.2 Hz, 3H), 0.65 ppm (s, 3H); 13C NMR (75 MHz,
CD2Cl2): d=136.5 (d), 136.4 (d), 134.5 (s), 130.4 (d), 130.3 (d), 128.4
(d), 64.2 (t), 62.2 (d), 60.5 (s), 52.1 (d), 38.8 (d), 35.2 (s), 30.7 (t), 29.2
(q), 27.4 (q), 25.1 (q), 19.7 (s), 16.7 (q), 16.2 ppm (q); IR (oil film on
Acknowledgements
We thank the Italian MIUR (funds PRIN) for financial support,
and Professor Mariella Mella for the NMR spectra measure-
ment.
~
NaCl disks): n=2962, 1472, 1428, 1390, 1112, 856, 824, 740,
701 cmꢀ1; HRMS (EI): m/z calcd for C27H38O2Si: 422.2641; found
422.2645.
The diastereomeric ratio (d.r.) ꢁ99:1 of compound 27 was deter-
mined by GC analysis on a capillary HP5 column (30 m, 0.25 mm
i.d., 0.25 mm f.t.); carrier gas=He, flow=1 mLminꢀ1; injector tem-
perature=2508C; detector: MS; temperature program: 808C
(1 min), then 108Cminꢀ1 to 2808C (5 min); tR of cis compound 27=
21.44 min; tR of trans compound 30=21.04 min.
Keywords: fragrances · hydrogenation · terpenoids · total
synthesis · Wilkinson’s catalyst
[1] a) A. Tschirsch in Handbuch der Pharmakognosie, C. H. Tachnitz Verlag,
Leipzig, 1917, p. 1143; b) G. Ohloff, Scent and Fragrances; Springer-
Verlag, Berlin, Heidelberg, 1994, p. 164; c) L. Jaenicke, F. J. Marner, Pure
Appl. Chem. 1990, 62, 1365–1368.
[2] a) D. H. Pybus in The Chemistry of Fragrances (Eds.: D. H. Pybus, C. S.
Sell), Royal Society of Chemistry, Cambridge, 1999, p. 14; b) G. Ohloff,
W. Pickenhagen, P. Kraft, Scent and Chemistry: The Molecular World of
Odors, Wiley-VCH, Weinheim, 2012, p. 214.
Meyer–Schuster rearrangement[24] of propargylic benzoate
45.
b) V. Rautenstrauch, B. Willhalm, W. Thommen, G. Ohloff, Helv. Chim.
[(IprAu)2OH]BF4 (2.7 mg, 0.002 mmol, 0.02 equiv) was added to a so-
lution of ester 45 (33 mg, 0.1 mmol, 1.0 equiv) in a 100:1 butan-2-
one/H2O solvent mixture (1.1 mL/0.011 mL). The mixture was stirred
and heated at 608C for 12 h. The solvent was then removed under
reduced pressure (P>10.66 kPa). The residue, composed by a mix-
ture of E and Z irones, was separated by column chromatography
(150 mmꢂ15 mm) on silica gel (5 g; eluent=1% Et2O/pentane), af-
fording (Z,2S,6R)-(ꢀ)-cis-a-irone 46 (2.6 mg, 12%) as a colorless oil,
followed by the desired (E,2S,6R)-(ꢀ)-cis-a-irone 4 (12.3 mg, 56%)
as a colorless oil.
and references therein.
3968; Formal synthesis: e) G. Laval, G. Audran, J.-M. Galano, H. Monti, J.
[8] M. Bovolenta, F. Castronovo, A. Vadalꢄ, G. Zanoni, G. Vidari, J. Org.
[12] E. J. Corey, J. W. Suggs, Tetrahedron Lett. 1975, 16, 2647–2650.
[14] A. Ozanne, L. Pouysꢃgu, D. Depernet, B. Francois, S. Quideau, Org. Lett.
(E,2S,6R)-(ꢀ)-cis-a-irone (4): The enantiomeric (e.r.) and diastereo-
meric ratio (d.r.) ꢁ99:1 of compound 4 were determined by GC
analysis on a capillary Mega DEX column (20 m, 0.25 mm i.d.,
0.18 mm f.t.); dacnPentilSilBETACDX as stationary phase; carrier
gas=He, split 1:30, flow=1 mLminꢀ1
; injector temperature=
2508C; detector: FID; temperature program: 808C (1 min), then
108Cminꢀ1 to 2808C (5 min); tR =10.36 min. Rf =0.28 (pentane-
Et2O, 99:1). ½aꢂ2D2 =ꢀ109.9 cm3 gꢀ1 dmꢀ1 (c=0.42 in CH2Cl2);[7a]
½aꢂ2D1 =ꢀ119.2 cm3 gꢀ1 dmꢀ1 (c=0.25 in CH2Cl2);[7b] ½aꢂ2D0 =ꢀ103.7
(c=0.65 in CHCl3; 86% ee);[4] ½aꢂD20 =ꢀ130 cm3 gꢀ1 dmꢀ1 (c=1.55 in
CH2Cl2; chemical purity=85%, 98% ee)]; 1H NMR (300 MHz,
CD2Cl2): d=6.65 (dd, J=15.9 and 10.8 Hz, 1H), 6.12 (d, J=15.8 Hz,
1H), 5.56 (m, 1H), 2.60 (br d, J=10.0 Hz, 1H), 2.25 (s, 3H), 2.05–
1.95 (m, 1H), 1.87–1.70 (m, 1H), 1.53 (d, J=1.6 Hz, 3H), 1.55–1.45
(m, 1H), 0.88 (d, J=6.5 Hz, 3H), 0.87 (s, 3H), 0.71 ppm (s, 3H);
13C NMR (75 MHz, CD2Cl2): d=198.8 (s), 150.1 (d), 135.5 (d), 133.2
(s), 123.9 (d), 57.0 (d), 39.0 (d), 36.7 (s), 32.8 (t), 27.9 (q), 27.7 (q),
~
23.7 (q), 16.2 (q), 15.8 ppm (q); IR (oil film on NaCl disks):n=2965,
1675, 1618, 1364, 1254, 966 cmꢀ1; HRMS (EI): m/z calcd for C14H22O
1
206.1671; found 206.1674. The H NMR and 13C NMR spectroscopic
data of compound 4 are in accordance with those reported in the
literature.[7a,b]
22
(Z,2S,6R)-(ꢀ)-cis-a-irone (46): Rf =0.32 (1% Et2O/pentane); ½aꢂD
=
ꢀ39 cm3 gꢀ1 dmꢀ1 (c=1.3 in CH2Cl2) ;[7a] ½aꢂ2D1 =ꢀ37.7 cm3 gꢀ1 dmꢀ1
[19] Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Men-
nucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S.
Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Strat-
mann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.
Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dan-
1
(c=0.83 in CH2Cl2)]; H NMR (300 MHz, CD2Cl2): d=6.37 (d, J=11.8,
Hz, 1H), 5.96 (t, J=11.8 Hz, 1H), 5.51 (m, 1H), 3.98 (br d, J=11.7,
Hz, 1H), 2.23 (s, 3H), 1.94–1.86 (m, 1H), 1.75–1.67 (m, 1H), 1.55 (d,
J=1.5 Hz, 3H), 1.35–1.25 (m, 1H), 0.89 (d, J=6.8 Hz, 3H), 0.87 (s,
3H), 0.71 ppm (s, 3H); 13C NMR (75 MHz, CD2Cl2): d=199.9 (s),
148.5 (d), 133.7 (s), 130.4 (d), 122.8 (d), 50.2 (d), 38.8 (d), 36.7 (s),
32.7 (t), 32.5 (q), 26.9 (q), 23.0 (q), 15.0 (q), 14.6 ppm (q); HRMS (EI):
1
m/z calcd for C14H22O 206.1671; found 206.1675. The H NMR spec-
trum of compound 46 is in complete accordance with the
literature.[7a]
&
&
Chem. Eur. J. 2014, 20, 1 – 10
8
ꢀ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÝÝ These are not the final page numbers!