Please do not adjust margins
RSC Advances
Page 3 of 8
DOI: 10.1039/C5RA23457C
Journal Name
ARTICLE
d6, 400 MHz)/ δ ppm: 3.72 (s, 6H, OCH3), 6.75 (s, 2H, CH), 6.99 (s,
4H, Ar-H), 7.28-7.30 (d,J= 6.8 Hz, 4H, Ar-H), 11.31 (s, 2H, NH) ppm;
13C NMR (DMSO-d6, 100 MHz) δ (ppm): 55.73 (CH3), 77.03 (CH),
114.76 (CH), 127.67 (CH), 130.0 (C), 160.35 (C), 184.0 (C=S); ppm;
CHNCalculated (%): C (55.96), H (4.66), N (14.51), S (16.58); CHNFound
(%): C (55.93), H (4.76), N (14.72), S (16.68). 17
3. Results and discussion
3.1. Characterization of magnetic nanocatalyst
The synthetic path to the magnetic nanocatalyst is shown in
Scheme 2.
Iron-oxide nanoparticles were prepared via co-precipitation and
modified with a thin layer of amorphous silica by Stöber method
through sol–gel method. The Fe3O4@SiO2 -supported TiO2 magnetic
catalyst obtained after addition of Ti(OC4H9)4 into the Fe3O4@SiO2
magnetic composite. Silica layer was utilized to encapsulate the
Fe3O4 NPs to prevent any decrease in catalytic property when it was
incorporated into the TiO2 structure. Because silica as a shell can
decrease the electronic interactions at the point of contact.19
The magnetic nanoparticles were characterized by X-ray diffraction
(XRD), Fourier transform infrared (FT-IR), scanning electron
microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and
vibrating sample magnetometer (VSM).
2.5.1.4. Tetrahydro-3,7-bis (2-chlorophenyl)-[1,2,4] triazolo [1,2-a]
[1,2,4] triazole-1,5-dithione (3d):white solid, m.p= 197 °C; Rf
(petroleum ether:ethylacetate= 7:3 (v/v)) =0.32; IR (KBr) ν (cm-1):
3433, 3183, 2929, 1498,1251; 1H NMR (DMSO-d6, 400 MHz) δ
(ppm): 7.16 (s, 1H, CH), 7.34-7.36 (m, 1H, Ar-H), 7.43-7.47 (m, 2H,
Ar-H), 7.54-7.61 (m, 1H, Ar-H), 11.48 (s, 1H, NH); 13C NMR (DMSO-
d6, 100 MHz) δ (ppm): 74.86 (CH), 128.14 (CH), 128.63 (CH), 130.62
(CH), 131.87 (CH), 132.48 (C), 134.01 (C), 185.19 (C=S) ppm;
CHNCalculated (%): C (48.60), H (3.04), N (14.18), S (16.20), Cl (17.72);
CHNFound (%): C (47.99), H (3.58), N (14.76), S (16.09), Cl (17.58).
2.5.1.5.Tetrahydro-3,7-bis (3-chlorophenyl)-[1,2,4] triazolo [1,2-a]
[1,2,4] triazole-1,5-dithione (3e): white solid, m.p= 194-195 °C; Rf
(petroleum ether:ethylacetate= 7:3 (v/v)) = 0.35; IR (KBr)/ ν (cm-1):
3427, 3191, 2927, 1501, 1247 ;1H NMR (Acetone-d6, 400 MHz)/ δ
ppm: 7.07 (s, 1H, CH), 7.47-7.51 (m, 3H, Ar-H), 7.55 (s, 1H, Ar-H),
10.14 (s, 1H, NH);13C NMR (DMSO-d6, 100 MHz) δ (ppm): 76.62
(CH), 124.88 (CH), 126.39 (CH), 128.12 (CH), 131.84 (CH), 134.15 (C),
139.76 (C), 184.47 (C=S) ppm; CHNCalculated (%): C (48.60), H (3.04), N
(14.18), S (16.20), Cl (17.72); CHNFound (%): C (48.32), H (3.13), N
(14.31), S (16.29), Cl (17.81). 17
NaOH, EtOH
Fe3O4
FeCl2. 4H2O FeCl3. 6H2O
1)
Ar
SiO2
TEOS, NH3
Fe3O4
2)
Fe3O4
2.5.1.6. Tetrahydro-3,7-bis (4-chlorophenyl)-[1,2,4] triazolo [1,2-a]
[1,2,4] triazole-1,5-dithione (3f): white solid, m.p= 201-203 °C; Rf
(petroleum ether:ethylacetate)= 7:3 (v/v)) =0.31; IR (KBr)/ ν (cm-1):
TiO2
SiO2
1) Ti(OEt)4, EtOH
2 h, 90 oC
SiO2
3)
1
Fe3O4
Fe3O4
3438, 3168, 2925, 1629, 1492, 1249, 1157; H NMR (Acetone-d6,
2) 2 h, 450 oC
400 MHz)/ δ ppm:6.84 (s, 2H, CH), 7.39 (s, 4H, ArH), 7.51 (s, 4H,
ArH), 11.48 (s, 2H, NH) ppm;13C NMR (DMSO-d6, 100 MHz) δ (ppm):
75.50 (CH), 128.4 (CH), 130.45 (CH), 133.21 (CH), 133.8 (CH), 184.1
(C=S) ppm; CHNCalculated (%): C (48.60), H (3.04), N (14.18), S (16.20),
Cl (17.72); CHNFound (%): C (58.82), H (4.39), N (17.34), S (19.73). 17
Scheme 2. Preparation steps of magnetic catalyst.
The phase and purity of three samples (Fe3O4, Fe3O4@SiO2 and
Fe3O4@SiO2-TiO2) were plotted by The X-ray diffraction patterns
(Figure 1).
2.5.1.7. Tetrahydro-3,7-bis (3-hydroxyphenyl)-[1,2,4] triazolo [1,2-a]
[1,2,4] triazole-1,5-dithione (3g): white solid, m.p= 165-167 °C; Rf
(petroleum ether:ethylacetate= 7:3 (v/v)) =0.12; IR (KBr)/ ν (cm-1):
3423, 3177, 2958, 1601, 1505, 1250; 1H NMR (Acetone-d6, 400
MHz) δ (ppm): 6.95 (s, 4H, Ar-H), 7.24 (s, 1H, CH), 8.62 (s, 1H, OH),
9.97 (s, 1H, NH) ppm;13C NMR (Acetone-d6, 100 MHz) δ (ppm): 73
(CH), 112.01 (CH), 113. 88 (CH), 119.03 (CH), 130.0 (CH), 145.50
(CH), 158.09 (C), 184. 0 (C=S) ppm;CHNCalculated (%): C (53.70), H
(3.88), N (15.04), S (17.68), O (9.70); CHNFound (%): C (53.76), H
(3.58), N (15.34), S (17.74), O (9.66).
The XRD pattern of Fe3O4 MNPs exhibit the peaks at 2θ= 30.1, 35.5,
43.2, 53.5, 57.0, 62.8 and 74.3° (Figure 1a). It is in agreement with
the JCPDS card No. 19–0629.36The coating of amorphous phase SiO2
does not change the structure of Fe3O4nanoparticles (Figure 1b).
Also, the position and relative intensities of peaks indicate that the
structure of Fe3O4@SiO2 can be remained after the surface
modification with TiO2. The XRD pattern of the Fe3O4@SiO2-TiO2
MNPs shows peaks at 2θ =25.2, 30.3, 35.6, 43.4, 48.2, 53.5, 57.2
63.1 and 74.4°(Figure1c). The peaks at around 25° and 48° conform
to the (1 0 1) and (2 0 0) Bragg reflection planes which indicates the
existence of tetragonal anatase TiO2.
2.5.1.8. Tetrahydro-3,7-bis (3-hydroxy-4-methoxyphenyl)-[1,2,4]
triazolo [1,2-a][1,2,4]triazole-1,5-dithione (3h): white solid, m.p=
177-180 °C; Rf (petroleum ether:ethylacetate= 7:3 (v/v)) =0.06; IR
1
(KBr)/ ν (cm-1): 3422, 2929, 1510, 1278, 1133; H NMR (Acetone-d6,
The elemental composition is calculated from the energy dispersive
X-ray. The EDAX image confirmed the existence of Fe, Si, O and Ti
elements in the magnetic catalyst (Figure 2). The elemental
compositions of Fe3O4@SiO2-TiO2nanocatalystwere 14.9, 70.3, 6.7,
and 7.9 wt % for Fe, O, Si, and Ti, respectively. The presence of Ti
inthe composites indicates that the titanium dioxide nanoparticles
have been deposited on the surface of Fe3O4@SiO2.
400 MHz)/ δ ppm:3.81 (s, 6H, OCH3), 6.86 (s, 2H, CH), 6.96-7.40 (m,
6H, ArH), 7.89 (s, 2H, OH), 9.88 (s, 2H, NH) ppm; 13C NMR (Acetone-
d6, 100 MHz) δ (ppm): 55.40 (OCH3), 77.09 (CH), 111.54 (CH), 112.79
(CH), 117.32 (CH), 129.98 (C), 146.91 (C), 148.37 (C), 185.00
(C=S);CHNCalculated (%): C (51.52), H (4.29), N (13.35), S (15.55), O
(15.29); CHNFound (%): C (51.34), H (4.83), N (12.88), S (14.98), O
(15.97).
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins