ChemComm
Communication
mechanism has also been proposed. Further studies on the
mechanistic details of this catalytic system along with the
reaction properties of the other cyclopropenones are currently
underway in our laboratory.
We thank the Shanghai Municipal Committee of Science and
Technology (11JC1402600), the National Basic Research Program
of China (973)-2009CB825300, and the National Natural Science
Foundation of China for financial support (21072206, 20472096,
21102166, 21372241, 21302203, 21372250, 20672127, 21121062
and 20732008).
Notes and references
1 R. Breslow, R. R. Haynie and J. Mirra, J. Am. Chem. Soc., 1959, 81, 247.
2 D. N. Kursanov, M. E. Volpin and Y. D. Koreshkov, Izv. Akad. Nauk
SSSR, Ser. Khim., 1959, 560.
Scheme 1 Asymmetric reaction of cyclopropenone with MeOH cata-
lyzed by chiral phosphine catalyst LB1.
3 (a) H. Tokuyama, M. Isaka, E. Nakamura and Y. Morinaka, J. Antibiot.,
1992, 45, 1148; (b) R. Ando and Y. Morinaka, J. Am. Chem. Soc., 1993,
115, 1174; (c) R. Ando, T. Sakaki, Y. Morinaka, C. Takahashi,
Y. Tamao, N. Yoshii, S. Katayama, K.-I. Saito, H. Tokuyama,
M. Isaka and E. Nakamura, Bioorg. Med. Chem., 1999, 7, 571.
4 For reviews: (a) K. T. Potts and J. S Baum, Chem. Rev., 1974, 74, 189;
(b) T. Eicher and J. L. Weber, Top. Curr. Chem., 1975, 57, 1;
(c) K. Komatsu and T. Kitagawa, Chem. Rev., 2003, 103, 1371.
5 A. Hamada and T. Takizawa, Chem. Pharm. Bull., 1975, 23, 2933.
6 (a) Y. Wei and M. Shi, Chem. Rev., 2013, 113, 6659; (b) Y. Wei and
M. Shi, Acc. Chem. Res., 2010, 43, 1005.
7 (a) A. Kascheres and D. Marchi, J. Org. Chem., 1975, 40, 2985;
(b) Y. Tamura, H. Matsushima and M. Ikeda, Tetrahedron, 1975,
32, 431; (c) K. N. Hemming, M. V. R. Khan, V. Kondakal, A. Pitard,
M. I. R. Qamar and C. Rice, Org. Lett., 2012, 14, 126.
8 (a) A. Hamada and T. Takizawa, Chem. Pharm. Bull., 1975, 23, 2933;
´
´
´
´
´
(b) M. Alajarvın, C. Lopez-Leonardo, A. Alvarez-Garcıa, P. Llamas-
´
´
Lorente, P. Sanchez-Andrada, J. Berna, A. Pastor, D. G. Baustista and
P. Jones, Chem.–Eur. J., 2010, 16, 3728.
9 For selected reviews about allene chemistry, see: (a) S. Patai, The
Chemistry of Ketenes, Allenes and Related Compounds, Wiley, New York,
1980; (b) S. R. Landor, The Chemistry of the Allenes, Academic Press,
London, 1982; (c) R. W. Bates and V. Satcharoen, Chem. Soc. Rev., 2002,
31, 12; (d) R. Zimmer, C. U. Dinesh, E. Nandanan and F. A. Khan, Chem.
Rev., 2000, 100, 3067; (e) Modern Allene Chemistry, ed. N. Krause and
A. S. K. Hashmi, Wiley-VCH, Weinheim, Germany, 2004; ( f ) A. Barbero
and F. J. Pulido, Synthesis, 2004, 779; (g) S. Ma, Chem. Rev., 2005,
105, 2829; (h) S. Yu and S. Ma, Angew. Chem., Int. Ed., 2012, 51, 3074.
10 (a) D. W. C. MacMillan, J. Am. Chem. Soc., 2002, 124, 13646; (b) S. Ma,
H. Ren and Q. Wei, J. Am. Chem. Soc., 2003, 125, 4817; (c) J. E. Wilson and
G. C. Fu, Angew. Chem., Int. Ed., 2006, 45, 1426; (d) S. Ma and Z. Gu, J. Am.
Chem. Soc., 2006, 128, 4942; (e) Y. S. Tran and O. Kwon, J. Am. Chem. Soc.,
2007, 129, 12632; ( f ) C. E. Henry and O. Kwon, Org. Lett., 2007, 9, 3069;
(g) Y. Li, H. Zou, J. Gong, J. Xiang, T. Luo, J. Quan, G. Wang and Z. Yang,
Org. Lett., 2007, 9, 4057; (h) C. Zhou, C. Fu and S. Ma, Angew. Chem., Int.
Ed., 2007, 46, 4379; (i) Z. Lu, S. Zheng, X. Zhang and X. Lu, Org. Lett., 2008,
10, 3267; ( j) B. J. Cowen, L. B. Saun-ders and S. J. Miller, J. Am. Chem. Soc.,
2009, 131, 6105; (k) X. Guan, Y. Wei and M. Shi, J. Org. Chem., 2009,
74, 6343; (l) Q.-M. Zhang, L. Yang and X.-F. Tong, J. Am. Chem. Soc., 2010,
132, 2550; (m) G. Chai, S. Wu, C. Fu and S. Ma, J. Am. Chem. Soc., 2011,
133, 3740; (n) X.-N. Zhang, H.-P. Deng, L. Huang, Y. Wei and M. Shi,
Chem. Commun., 2012, 48, 8664.
Scheme 2 Plausible reaction mechanism.
A plausible mechanism for this reaction is outlined in
Scheme 2. The transformation is believed to proceed via con-
jugate addition of Lewis base (LB) to cyclopropenone, affording
zwitterionic intermediate A.15 Subsequently, methanol is depro-
tonated to give intermediate B. Then the three-membered ring is
opened and the acetate anion is released, leading to intermedi-
ate C. The acetate anion grabs a proton of intermediate C to give
intermediate D, which upon loss of the Lewis base catalyst gives
rise to the final product 3. Alternatively, the conjugate addition
of LB to cyclopropenone produces a cyclopropene enolate A0,
which undergoes ring opening to give a ketene intermediate B0.
Subsequently, the ketene intermediate E reacts with methanol to
afford the final product. A more detailed investigation on the
reaction mechanism will be reported in due course.
11 For recent reviews on the syntheses of allenes, see (a) K. M. Brummond
and J. E. DeForrest, Synthesis, 2007, 795; (b) S. Yu and S. Ma, Chem.
Commun., 2011, 47, 5384.
In summary, we have investigated novel and interesting reactions
of cyclopropenones with alcoholic nucleophiles catalyzed by different 12 H. Lu, D. Leow, K.-W. Huang and C.-H. Tan, J. Am. Chem. Soc., 2009,
131, 7212.
Lewis bases, affording the corresponding allenic esters in moderate to
high yields under mild conditions. This is the first example on the
13 (a) W. Zhang, H. Xu, H. Xu and W. Tang, J. Am. Chem. Soc., 2009,
131, 3832; (b) W. Zhang, S. Zheng, N. Liu, J. B. Werness, I. A. Guzei
Lewis base-catalyzed formation of allenic esters from cyclopropenones.
Based on this unprecedented method, axially chiral allenic esters
have also been furnished in moderate yield and ee in the presence
of multifunctional chiral phosphine LB1. A plausible reaction
and W. Tang, J. Am. Chem. Soc., 2010, 132, 3664.
14 The crystal data of compound 3j have been deposited in CCDC with
number 917097.
15 For theoretical investigations on the relative stabilities of other
possible zwitterionic intermediates, see ESI†.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 115--117 | 117