Page 27 of 28
The Journal of Organic Chemistry
1
2
3
4
5
(21) (a) Tanaka, R.; Yuza, A.; Watai, Y.; Suzuki, D.; Takayama, Y.; Sato, F.; Urabe, H. One-Pot Synthesis of Metalated
Pyridines from Two Acetylenes, a Nitrile, and a Titanium(II) Alkoxide. J. Am. Chem. Soc. 2005, 127, 7774-7780. (b) Hilf, J. A.;
Holzwarth, M. S.; Rychnovsky, S. D. Route to Highly Substituted Pyridines. J. Org. Chem. 2016, 81, 10376-10382.
6
7
8
(22) Takahashi, T.; Tsai, F.-Y.; Li, Y.; Wang, H.; Kondo, Y.; Yamanaka, M.; Nakajima, K.; Kotora, M. Selective Preparation of
Pyridines, Pyridones, and Iminopyridines from Two Different Alkynes via Azazirconacycles. J. Am. Chem. Soc. 2002, 124,
5059-5067.
9
(23) McCormick, M. M.; Duong, H. A.; Zuo, G.; Louie, J. A Nickel-Catalyzed Route to Pyridines. J. Am. Chem. Soc. 2005, 127,
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
5030-5031.
(24) a) De Paolis, O.; Baffoe, B.; Landge, S. M.; Török, B. Multicomponent Domino Cyclization–Oxidative Aromatization on a
Bifunctional Pd/C/K-10 Catalyst: An Environmentally Benign Approach toward the Synthesis of Pyridines. Synthesis 2008,
3423-3428. (b) Chiba, S.; Xu, Y.-J.; Wang, Y.-F. A Pd(II)-Catalyzed Ring-Expansion Reaction of Cyclic 2-Azidoalcohol
Derivatives: Synthesis of Azaheterocycles. J. Am. Chem. Soc. 2009, 131, 12886-12887. (c) He, Z.; Dobrovolsky, D.; Trinchera,
P.; Yudin, A, K. Synthesis of Multisubstituted Pyridines. Org. Lett. 2013, 15, 334-337. (d) Hardegger, L. A.; Habegger, J.;
Donohoe, T. J. Modular Synthesis of Highly Substituted Pyridines via Enolate α-Alkenylation. Org. Lett. 2015, 17, 3222-3225.
(25) (a) Manning, J. R.; Davies, H. M. L. One-Pot Synthesis of Highly Functionalized Pyridines via a Rhodium Carbenoid
Induced Ring Expansion of Isoxazoles. J. Am. Chem. Soc. 2008, 130, 8602-8603. (b) Parthasarathy, K.; Jeganmohan, M.; Cheng,
C. H. Rhodium-Catalyzed One-Pot Synthesis of Substituted Pyridine Derivatives from α,β-Unsaturated Ketoximes and Alkynes.
Org. Lett. 2008, 10, 325-328 (c) Neely, J. M.; Rovis, T. Rh(III)-Catalyzed Regioselective Synthesis of Pyridines from Alkenes
and α,β-Unsaturated Oxime Esters. J. Am. Chem. Soc. 2013, 135, 66-69. (d) Xu, F.; Wang, C.; Wang, H.; Li, X.; Wan, B. Eco-
friendly synthesis of pyridines via rhodium-catalyzed cyclization of diyne with oxime. Green Chem. 2015, 17, 799-803.
(26) (a) Movassaghi, M.; Hill, M. D. Synthesis of Substituted Pyridine Derivatives via the Ruthenium-Catalyzed
Cycloisomerization of 3-Azadienynes. J. Am. Chem. Soc. 2006, 128, 4592-4593. (b) Trost, B. M.; Gutierrez, A. C. Ruthenium-
Catalyzed Cycloisomerization−6π-Cyclization: A Novel Route to Pyridines. Org. Lett. 2007, 9, 1473-1476. (c) Zhao, M.-N.; Hui,
R.-R.; Ren, Z.-H.; Wang, Y.-Y; Guan, Z.-H. Ruthenium-Catalyzed Cyclization of Ketoxime Acetates with DMF for Synthesis of
Symmetrical Pyridines. Org. Lett. 2014, 16, 3082-3085. (d) Bai, Y.; Tang, L.; Huang, H.; Deng, G.-J. Synthesis of 2,4-
diarylsubstituted-pyridines through a Ru-catalyzed four component reaction. Org. Biomol. Chem. 2015, 13, 4404-4407. (e) Jia,
Z.; Wang, K. Tan, B.; Gu, Y. Ruthenium Complexes Immobilized on Functionalized Knitted Hypercrosslinked Polymers as
Efficient and Recyclable Catalysts for Organic Transformations. Adv. Synth. Catal. 2017, 359, 78-88.
(27) (a) Varela, J. A.; Saá, C. Construction of Pyridine Rings by Metal-Mediated [2 + 2 + 2] Cycloaddition. Chem. Rev. 2003,
103, 3787-3802. (b) Heller, B.; Hapke, M. The fascinating construction of pyridine ring systems by transition metalcatalysed [2 +
2 + 2] cycloaddition reactions. Chem. Soc. Rev. 2007, 36, 1085-1094. (c) Ohashi, M.; Takeda, I.; Ikawa, M.; Ogoshi, S. Nickel-
Catalyzed Dehydrogenative [4 + 2] Cycloaddition of 1,3-Dienes with Nitriles. J. Am. Chem. Soc. 2011, 133, 18018-18021. (d)
Wang, C.; Li, X.; Wu, F.; Wan, B. A Simple and Highly Efficient Iron Catalyst for a [2+2+2] Cycloaddition to Form Pyridines.
Angew. Chem., Int. Ed. 2011, 50, 7162-7166. (e) Wang, Y.; Li, G.; He, Y.; Xie, Y.; Wang, H.; Pan, Y. Synthesis of
Polysubstituted Imidazoles and Pyridines via Samarium(III) Triflate-Catalyzed [2+2+1] and [4+2] Annulations of Unactivated
Aromatic Alkenes with Azides. Adv. Synth. Catal. 2015, 357, 3229-3241.
(28) (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Synthesis of Dihydropyridines and Pyridines from Imines and Alkynes via
C-H Activation. J. Am. Chem. Soc. 2008, 130, 3645-3651. (b) Nakao, Y. Transition-Metal-Catalyzed C–H Functionalization for
the Synthesis of Substituted Pyridines. Synthesis 2011, 3209-3219. (c) Martin, R. M.; Bergman, R. G.; Ellman, J. A. Synthesis of
Pyridines from Ketoximes and Terminal Alkynes via C−H Bond Functionalization. J. Org. Chem. 2012, 77, 2501-2507.
(29) Huang, H.; Cai, J.; Tang, L.; Wang, Z.; Li, F.; Deng, G.-J. Metal-Free Assembly of Polysubstituted Pyridines from Oximes
and Acroleins. J. Org. Chem. 2016, 81, 1499-1505.
(30) Wang, S.-W.; Guo, W.-S.; Wen, L.-R.; Li, M. A new approach to pyridines through the reactions of methyl ketones with
1,2,4-triazines. RSC Adv. 2014, 4, 59218-59220.
(31) (a) Wang, Q.; Wan, C.; Gu, Y.; Zhang, J.; Gao, L; Wang, Z. A metal-free decarboxylative cyclization from natural a-amino
acids to construct pyridine derivatives. Green Chem. 2011, 13, 578-581. (b) Xiang, J.-C.; Wang, M.; Cheng, Y.; Wu, A.-X.
Molecular Iodine-Mediated Chemoselective Synthesis of Multisubstituted Pyridines through Catabolism and Reconstruction
Behavior of Natural Amino Acids. Org. Lett. 2016, 18, 24-27. (c) Prek, B.; Bezensek, J.; Stanovnik, B. Synthesis of pyridines
with an amino acid residue by [2+2] cycloadditions of electron-poor acetylenes on enaminone systems derived from N-Boc
protected amino acids. Tetrahedron 2017, 73, 5260-5267.
(32) (a) Mandai, T.; Matsumoto, T.; Kawada, M.; Tsuji, J. Palladium-Catalyzed Decarboxylation-Hydrogenolysis of Propargyl
Formates to Form Disubstituted Acetylenes. Tetrahedron Lett. 1993, 34, 2161-2164. (b) Han, J.; Sun, H.; Ding, Y.; Lou, H.;
Zheng, X. Palladium-catalyzed decarboxylation of higher aliphatic esters: Towards a new protocol to the second generation
biodiesel production. Green Chem. 2010, 12, 463-467. (c) Rui, S.; Lei, L. Transition metal-catalyzed decarboxylative cross-
ACS Paragon Plus Environment