778
Russ.Chem.Bull., Int.Ed., Vol. 62, No. 3, March, 2013
Shchepochkin et al.
clusion that the oxidation potentials of compounds, exꢀ
cept 5 and 9, change symbatically with the changes of the
HOMO energies.
It can be suggested that the development of this apꢀ
proach will allow one to use quantum chemical calculaꢀ
tions for the evaluation of stability of forming Hꢀadducts
and their oxidation potentials, that, in turn, will suggest
a more rational choice of synthetic methods and selection
of oxidants for aromatization.
This work was financially supported by the Russian
Foundation for Basic Research (Project No. 12ꢀ03ꢀ90705ꢀ
mob_st.) and the Council on Grants at the President of
the Russian Federation (Program of State Support for
Leading Scientific Schools of the Russian Federation,
Grant NShꢀ55052012.3).
References
1. P. T. Anastas, J. C. Warner, Green Chemistry: Theory and
Practice, Oxford University Press, New York, 1998.
2. D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humꢀ
phrey, J. L. Leazer, Jr., R. J. Linderman, K. Lorenz, J. Manꢀ
ley, B. A. Pearlman, A. Wells, A. Zaks, T. Y. Zhang, Green
Chem., 2007, 9, 411.
3. O. N. Chupakhin, V. N. Charushin, H. C. van der Plas,
aromatic nucleophilic Substitution of Hydrogen, Academic
Press, San Diego, New York, 1994.
4. V. N. Charushin, O. N. Chupakhin, Mendeleev Commun.,
2007, 17, 249.
5. V. N. Charushin, O. N. Chupakhin, H. C. van der Plas, Adv.
Heterocycl. Chem., 1988, 43, 301.
Experimental
Cyclic voltammograms were recorded on an Autolab
PGSTAT128N instrument. The studies were carried out under
inert gas argon in anhydrous acetonitrile with the additives of
supporting electrolyte Bu4NClO4 (0.1 mol L–1) at 17—18 C in
a threeꢀelectrode system. A platinum disk electrode (d = 2 mm)
served as a working electrode, a glass graphite rod as a auxiliary
electrode, Ag/AgCl was a reference electrode. The scanning
rate 100 mV s–1. The concentration of the samples 10–3 M.
Elemental analysis was performed on a Carlo Erba 1108 autoꢀ
1
matic CHNO analyzer. H NMR spectra were obtained on an
6. V. N. Charushin, S. G. Alexeev, O. N. Chupakhin, H. C.
van der Plas, Adv. Heterocycl. Chem., 1989, 46, 73.
7. O. N. Chupakhin, S. G. Alexeev, B. N. Rudakov, V. N.
Charushin, Heterocycles, 1992, 33, 931.
8. V. N. Charushin, O. N. Chupakhin, Pure Appl. Chem., 2004,
76, 1621.
9. M. Makosza, K. Wojciechowski, Chem. Rev., 2004,
104, 2631.
10. M. Makosza, Chem. Soc. Rev., 2010, 39, 2855.
11. A. Albert, The Acridines, Edward Arnold Ltd., Lonꢀ
don, 1966.aaaa
12. O. Sedlacek, M. Hruby, M. Studenovsky, D. Vetvicka,
J. Svoboda, D. Kankova, J. Kovar, K. Ulbrich, Bioorg. Med.
Chem., 2012, 20, 4056.
13. N. Desbois, M. Gardette, J. Papon, P. Labarre, A. Maisoꢀ
nial, P. Auzeloux, C. Lartigue, B. Bouchon, E. Debiton,
Y. Blache, O. Chavignon, J.ꢀC. Teulade, J. Maublant, J.ꢀC.
Madelmont, N. Moins, J.ꢀM. Chezal, Bioorg. Med. Chem.,
2008, 16, 7671.
14. M. Tonelli, G. Vettoretti, B. Tasso, F. Novelli, V. Boido,
F. Sparatore, B. Busonera, A. Ouhtit, P. Farci, S. Blois,
G. Giliberti, P. La Colla, Antiviral Research, 2011,
91, 133.aaa
15. E. G. Deeva, Ya. V. Pavlovskaya, O. I. Kiselev, V. I. Kiselev,
L. B. Piotrovskii, F. I. Ershov, Vestn. Ross. Akad. Med. Nauk
[Bull. Rus. Acad. Med. Sci.], 2004, 2, 29 (in Russian).
16. A. Kumar, K. Srivastava, S. R. Kumar, S. K. Puri, P. M. S.
Chauhan, Bioorg. Med. Chem. Lett., 2009, 19, 6996.
17. T. Nguyen, Y. Sakasegawa, K. Dohꢀura, MeiꢀLin Go, Eur.
J. Med. Chem., 2011, 46, 2917.
AVANCE DRXꢀ400 spectrometer (Bruker BioSpin) (solvent
DMSOꢀd6), using Me4Si as an internal standard.
Xꢀray diffraction studies were performed on a Xcalibur 3
automatic fourꢀcircle diffractometer, using a standard proceꢀ
dure (MoꢀК irradiation, graphite monochromator, 295(2)K,
/2ꢀscan technique). The structure was solved and refined using
the SHELX software.27 All the nonhydrogen atoms were refined
in anisotropic approximation, some hydrogen atoms were placed
into geometrically calculated positions and included into the
refinement using the riding model with the dependent isotropic
thermal parameters, some atoms (including all the protons at the
sp3ꢀhybridized carbon atom of the dihydroacridine system) were
solved and refined independently in isotropic approximation.
The final parameters of refinement of the structure and some
crystallographic parameters are given in Table 5. The results of
the Xꢀray diffraction analysis were deposited with the Cambridge
Structural Database (CCDC 929423, 929424, 929426—929428).
Acridine was commercially available from Aldrich. 10ꢀMeꢀ
thylacridinium iodide was synthesized according to the known
procedure.28
9,10ꢀDihydroꢀ10ꢀmethylꢀ9ꢀsubstituted acridines 2—9 (genꢀ
eral procedure). An ethanolic solution (3 mL) of potassium hyꢀ
droxide (38 mg, 0.685 mmol) and the corresponding NHꢀheteroꢀ
cycle (0.685 mmol) were added to a suspension of 10ꢀmethylꢀ
acridinium iodide (1) (200 mg, 0.623 mmol) in ethanol (3 mL).
The reaction mixture was stirred at room temperature for
40—50 min, then diluted with water (15 mL). A precipitate
formed was filtered off, washed with water, and recrystallized
from the corresponding solvent.
18. S. M. Sondhi, N. Singh, A. M. Lahoti, K. Bajaj, A. Kumar,
O. Lozach, L. Meijer, Bioorg. Med. Chem., 2005, 13, 4291.
19. A. K. Sheinkman, S. G. Potashnikova, S. N. Baranov,
Zh. Org. Khim., 1970, 6, 614 [J. Org. Chem. USSR (Engl. Transl.),
1970, 6].
20. O. N. Chupakhin, V. N. Charushin, E. O. Sidorov, G. L.
Rusinov, Zh. Org. Khim., 1979, 15, 206 [J. Org. Chem. USSR
(Engl. Transl.), 1979, 15].
The authors are grateful to Professor A. Rauk (Univerꢀ
sity of Calgary), WestGrid and Compute/Calcul Canada,
for the providing us with the calculation resources and
O. S. El´tsov with coꢀworkers of the NMR spectroscoꢀ
py group of of the Collective Center of the Ural Federal
University for their help in carrying out the NMR exꢀ
periments.