ChemComm
Communication
2 (a) B. J. Coe, in Non-Linear Optical Properties of Matter, ed.
M. G. Papadopoulos, A. J. Sadlej and J. Leszczynski, Springer Verlag,
Berlin, 2006, 571; (b) V. Guerchais, L. Ordronneau and H. Le Bozec,
Coord. Chem. Rev., 2010, 254, 2533; (c) K. A. Green, M. P. Cifuentes,
M. Samoc and M. G. Humphrey, Coord. Chem. Rev., 2011, 255, 2530;
(d) D. Marinotto, R. Castagna, S. Righetto, C. Dragonetti,
A. Colombo, C. Bertarelli, M. Garbugli and G. Guglielmo, J. Phys.
Chem. C, 2011, 115, 20425; (e) F. Castet, V. Rodriguez, J. L. Pozzo,
L. Ducasse, A. Plaquet and B. Champagne, Acc. Chem. Res., 2013,
46, 2656.
3 (a) P. C. Ray and P. K. Das, J. Phys. Chem, 1995, 99, 17891;
(b) P. K. Das, J. Phys. Chem. B, 2006, 110, 7621.
4 (a) P. D. Maker, Phys. Rev. A, 1970, 1, 923; (b) J. Zyss, J. Chem. Phys.,
1993, 98, 6583; (c) K. Clays and A. Persoons, Phys. Rev. Lett., 1991,
66, 2980; (d) J. Zyss and I. Ledoux, Chem. Rev., 1994, 94, 77.
5 L. Sanguinet, J.-L. Pozzo, M. Guillaume, B. Champagne, F. Castet,
L. Ducasse and E. Maury, J. Phys. Chem. B, 2006, 110, 10672.
6 F. Mançois, L. Sanguinet, J.-L. Pozzo, M. Guillaume, B. Champagne,
V. Rodriguez, F. Adamietz, L. Ducasse and F. Castet, J. Phys. Chem. B,
2007, 111, 9795.
Scheme 2 An acido-triggered NLO switch based on DPVPA.
It is known that the EFISH technique16 can provide direct infor-
mation on the intrinsic molecular NLO properties through eqn (1):
7 F. Mançois, J.-L. Pozzo, J. Pan, F. Adamietz, V. Rodriguez, L. Ducasse,
F. Castet, A. Plaquet and B. Champagne, Chem.–Eur. J., 2009, 15, 2560.
gEFISH = (mbEFISH/5kT) + g(ꢀ2o; o, o, 0)
(1)
´
ˇ
8 A. Plaquet, B. Champagne, J. Kulhanek, F. Bures, E. Bogdan, F. Castet,
L. Ducasse and V. Rodriguez, ChemPhysChem, 2011, 12, 3245.
9 (a) S. Di Bella, C. Dragonetti, M. Pizzotti, D. Roberto, F. Tessore and
R. Ugo, Top. Organmet. Chem., 2010, 28, 1; (b) O. Maury and H. Le
Bozec, in Molecular Materials, ed. D. W. Bruce, D. O’Hare and
R. I. Walton, Wiley, Chichester, 2010, pp. 1–59.
where mbEFISH/5kT is the dipolar orientational contribution to the
molecular nonlinearity, and g(ꢀ2o; o, o, 0), the third order polariz-
ability at frequency o of the incident light, is a purely electronic cubic
contribution to gEFISH which can usually be neglected when studying
the second order NLO properties of dipolar compounds.
We found that DPVPA is characterized by a good value of
mbEFISH (690 ꢁ 10ꢀ48 esu; the positive value of mbEFISH is in
agreement with an increase of the excited state dipole moment with
respect to the ground state), working in CHCl3 at a concentration of
10ꢀ4 M with a non-resonant incident wavelength of 1.907 mm,
obtained by Raman-shifting the fundamental 1.064 mm wavelength
produced by a Q-switched, mode-locked Nd3+:YAG laser.
10 D. Locatelli, S. Quici, S. Righetto, D. Roberto, F. Tessore,
G. J. Ashwell and M. Amiri, Prog. Solid State Chem., 2005, 33, 223.
11 D. Liu, Z. Zhang, H. Zhang and Y. Wang, Chem. Commun., 2013,
49, 10001.
12 Y.-X. Yan, X.-T. Tao, Y.-H. Sun, C.-K. Wang, G.-B. Xu, J.-X. Yang,
Y. Ren, X. Zhao, Y.-Z. Wu, X.-Q. Yu and M.-H. Jiang, J. Mater. Chem.,
2004, 14, 2995.
13 Y.-X. Yan, X.-T. Tao, Y.-H. Sun, W.-T. Yu, G.-B. Xu, C.-K. Wang,
H.-P. Zhao, J.-X. Yang, X.-Q. Yu, X. Zhao and M.-H. Jiang, Bull. Chem.
Soc. Jpn., 2005, 78, 300.
14 (a) B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts,
A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse
and K. Nakatani, Adv. Funct. Mater., 2002, 12, 110; (b) B. J. Coe,
J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons,
B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light,
M. B. Hursthouse and K. Nakatani, Adv. Funct. Mater., 2003, 13, 347.
15 An increase of the hyperpolarizability can be observed both with an
increase of the excited state dipole with respect to the ground state one,
leading to a positive Dmeg, and with a decrease of the excited state dipole
with respect to the ground state one, leading to a negative Dmeg.
16 (a) B. F. Levine and C. G. Bethea, J. Chem. Phys., 1975, 63, 2666;
(b) I. Ledoux and J. Zyss, Chem. Phys., 1982, 73, 203.
17 (a) V. Alain, M. Blanchard-Desce, I. Ledoux-Rak and J. Zyss, Chem.
Commun., 2000, 353; (b) A. Valore, E. Cariati, C. Dragonetti,
S. Righetto, D. Roberto, R. Ugo, F. De Angelis, S. Fantacci,
S. Sgamellotti, A. Macchioni and D. Zuccaccia, Chem.–Eur. J, 2010,
16, 4814; (c) F. Tessore, E. Cariati, F. Cariati, D. Roberto, R. Ugo,
P. Mussini, C. Zuccaccia and A. Macchioni, ChemPhysChem, 2010,
11, 495; (d) D. Roberto, A. Colombo, D. Locatelli, F. Tessore, R. Ugo,
M. Cavazzini, S. Quici, F. De Angelis, S. Fantacci, I. Ledoux-Rak,
N. Tancrez and J. Zyss, Dalton Trans., 2012, 41, 6707.
The mbEFISH of DPVPA increases by a factor of 1.5 (mbEFISH
=
1025 ꢁ 10ꢀ48 esu) upon protonation in the presence of HCl
vapours, in agreement with the red shift of the absorption
band, whereas further exposure to NH3 vapours restores (after
filtration of the solution to remove NH4Cl which muddies the
solution) the original value (Scheme 2).
In conclusion, DPVPA constitutes a new acido-triggered
reversible luminescent and nonlinear optical switch. The altera-
tion of the nonlinear properties is induced by the modulation of
the internal charge-transfer due to the response of the molecule
to protonation–deprotonation as the external stimulus. Remark-
ably, this communication unveils that the EFISH technique is a
convenient and novel method to reveal a protonation–deproto-
nation NLO contrast. Moreover, based on the recent results
reported by some of us on the application of the electric poling
technique18 for hybridizing thin films of ionic NLO chromo-
phores,19 the use of this latter technique to detect acidochromic
NLO contrasts for bulk materials can be envisaged. Studies on
the reversible protonation of thin films of DPVPA dispersed in
PMMA are currently under investigation in our laboratories.
This work was supported by MIUR (FIRB 2003:
RBNE033KMA and FIRB 2004: RBPR05JH2P) and CNR.
`
18 (a) D. Marinotto, S. Proutiere, C. Dragonetti, A. Colombo, P. Ferruti,
D. Pedron, M. C. Ubaldi and S. Pietralunga, J. Non-Cryst. Solids,
2011, 357, 2075; (b) D. Roberto, A. Colombo, C. Dragonetti,
D. Marinotto, S. Righetto, S. Tavazzi, M. Escadeillas, V. Guerchais,
H. Le Bozec, A. Boucekkine and C. Latouche, Organometallics, 2013,
32, 3890; (c) C. Dragonetti, A. Colombo, D. Marinotto, S. Righetto,
D. Roberto, A. Valore, M. Escadeillas, V. Guerchais, H. Le Bozec,
A. Boucekkine and C. Latouche, J. Organomet. Chem., 2013, DOI:
10.1016/ j.jorganchem.2013.09.003.
19 (a) R. Macchi, E. Cariati, D. Marinotto, E. Tordin, R. Ugo, G. Santoro,
M. C. Ubaldi, S. M. Pietralunga and G. Mattei, J. Mater. Chem., 2011,
21, 9778; (b) R. Macchi, E. Cariati, D. Marinotto, D. Roberto,
E. Tordin, R. Ugo, R. Bozio, M. Cozzuol, D. Pedron and G. Mattei,
J. Mater. Chem., 2010, 20, 1885.
Notes and references
1 J. Zyss, Molecular Nonlinear Optics: Materials, Physics and Devices,
Academic Press, Boston, 1994.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun.