Communication
Organic & Biomolecular Chemistry
ene glycol was chlorinated firstly by using a stoichiometric
chlorinating reagent, and then in the presence of a base, the
obtained 2-(2-chloroethoxy)ethanol reacted with 5 to give
Quetiapine. Utilizing the newly developed methodology, the
target 6 could be synthesized directly from sulfur-containing
amine 5 and diethylene glycol in 90% yield, and water was the
only by-product (Scheme 2c).
5142–5148; (c) S. L. Buchwald, C. Mauger, G. Mignani and
U. Scholz, Adv. Synth. Catal., 2006, 348, 23–39.
4 (a) P. N. Kolesnikov, N. Z. Yagafarov, D. L. Usanov,
V. I. Maleev and D. Chusov, Org. Lett., 2015, 17, 173–175;
(b) S. Zhou, S. Fleischer, H. Jiao and M. Beller, Adv. Synth.
Catal., 2014, 356, 3451–3455; (c) A. Pagnoux-Ozherelyeva,
N. Pannetier, M. D. Mbaye, S. Gaillard and J. L. Renaud,
Angew. Chem., Int. Ed., 2012, 51, 4976–4980; (d) C. Wang,
A. Pettman, J. Basca and J. Xiao, Angew. Chem., Int. Ed.,
2010, 49, 7548–7552; (e) S. Gomez, J. A. Peters and
T. Maschmeyer, Adv. Synth. Catal., 2002, 344, 1037–1057.
5 (a) W. Ma, X. Zhang, J. Fan, Y. Liu and W. Tang, J. Am.
Chem. Soc., 2019, 141, 13506–13515; (b) Y. Nakamura,
T. Ohta and Y. Oe, Chem. Commun., 2015, 51, 7459–7462;
(c) T. E. Müller, K. C. Hultzsch, M. Yus, F. Foubelo and
M. Tada, Chem. Rev., 2008, 108, 3795–3892; (d) M. Ahmed,
A. M. Seayad, R. Jackstell and M. Beller, J. Am. Chem. Soc.,
2003, 125, 10311–10318.
6 (a) H. W. Wang, Y. Lu, B. Zhang, J. He and H. J. Xu, Angew.
Chem., Int. Ed., 2017, 56, 7449–7453; (b) K.-H. Ng, Z. Zhou
and W.-Y. Yu, Org. Lett., 2012, 14, 272–275.
7 (a) X. Dai and F. Shi, Org. Biomol. Chem., 2019, 17, 2044–
2054; (b) A. Corma, J. Navas and M. J. Sabater, Chem. Rev.,
2018, 118, 1410–1459; (c) X. Ma, C. Su and Q. Xu, Top. Curr.
Chem., 2016, 374, 27.
Conclusions
In summary, a catalytic direct N-alkylation of sulfur-containing
compounds with alcohols using RuCl2(H2O)(CO)(PPh3)2 as a
catalyst has been developed for the first time by a hydrogen
borrowing strategy. The efficiency and practicality of this new
and green methodology were demonstrated with (1) alcohol to
amine molar ratio 5 : 1 and base-free conditions, (2) broad sub-
strate scope with wide functional group tolerance and chirality
retention, (3) good chemoselectivity and generally good yields,
and (4) water as the only generated by-product. In addition,
this protocol provided a step economical route to prepare the
pharmaceutical drug Quetiapine, which could avoid the use of
a stoichiometric toxic chlorinating reagent and base. Further
application of this methodology for the synthesis of other
drugs with sulfur-containing amine frameworks is now being
investigated.
8 (a) C. Risi, M. Calamante, E. Cini, V. Faltoni and
E. Petricci, Green Chem., 2020, 22, 327–331;
(b) A. Charvieux, J. B. Giorgi, N. Duguet and E. Métay,
Green Chem., 2018, 20, 4210–4216.
9 (a) C. Gunanathan and D. Milstein, Science, 2013, 341,
1229712; (b) A. J. Watson and J. M. J. Williams, Science,
2010, 329, 635–636; (c) G. Guillena, D. J. Ramón and
Conflicts of interest
There are no conflicts to declare.
M.
Yus,
Chem.
Rev.,
2010,
110,
1611–1641;
(d) M. H. S. A. Hamid, P. A. Slatford and J. M. J. Williams,
Adv. Synth. Catal., 2007, 349, 1555–1575; (e) M. G. Edwards,
R. F. Jazzar, B. M. Paine, D. J. Shermer and
M. K. Whittlesey, Chem. Commun., 2004, 90–91.
Acknowledgements
This work was financially supported by the Zhejiang Natural
Science Foundation (LY18B020017), Zhejiang Key Course of
Chemical Engineering and Technology, and Zhejiang Key 10 R. Grigg, T. R. B. Mitchell, S. Sutthivaiyakit and
Laboratory of Green Pesticides and Cleaner Production
Technology.
N. Tongpenyai, J. Chem. Soc., Chem. Commun., 1981, 611–
612.
11 Y. Watanabe, Y. Tsuji, H. Ige, Y. Ohsugi and T. Ohta, J. Org.
Chem., 1984, 49, 3359–3363.
12 (a) G. Balamurugan, R. Ramesh and J. G. Malecki, J. Org.
Chem., 2020, 85, 7125–7135; (b) D. Ye, R. Huang, H. Zhu,
L.-H. Zou and D. Wang, Org. Chem. Front., 2019, 6, 62–69;
(c) Y. Wu, Y. Huang, X. Dai and F. Shi, ChemSusChem, 2019,
12, 3185–3191; (d) M. Subaramanian, S. P. Midya,
P. M. Ramar and E. Balaraman, Org. Lett., 2019, 21, 8899–
8903; (e) J. Gour, S. Gatadi, S. Malasala, M. V. Yaddanpudi
and S. Nanduri, J. Org. Chem., 2019, 84, 7488–7494;
(f) S. Genc, B. Arslan, S. Gulcemal, S. Gunnaz and
B. Cetinkaya, J. Org. Chem., 2019, 84, 6286–6297;
(g) R. Fertig, T. Irrgang and F. Freitag, ACS Catal., 2018, 8,
8525–8530; (h) J. J. A. Celaje, X. Zhang, F. Zhang, J. Zander
and R. Kempe, ACS Catal., 2017, 7, 1136–1142; (i) Z. Yin,
H. Zeng, J. Wu and G. Zhang, ACS Catal., 2016, 6, 6546–
Notes and references
1 (a) M. Andrs, J. Korabecny, D. Jun, Z. Hodny and J. Bartek,
J. Med. Chem., 2015, 58, 41–71; (b) J. Chatterjee,
F. Rechenmacher and H. Kessler, Angew. Chem., Int. Ed.,
2013, 52, 254–269.
2 (a) A. Trowbridge, S. M. Walton and M. J. Gaunt, Chem.
Rev., 2020, 120, 2613–2692; (b) T. Irrgang and R. Kempe,
Chem. Rev., 2019, 119, 2524–2549; (c) S. Bähn, S. Imm,
L. Neubert, M. Zhang and H. Neumann, ChemCatChem,
2011, 3, 1853–1864.
3 (a) J. M. Dennis, N. A. White, R. Y. Liu and S. L. Buchwald,
J. Am. Chem. Soc., 2018, 140, 4721–4725; (b) O. Navarro,
N. Marion, J. Mei and S. P. Nolan, Chem. – Eur. J., 2006, 12,
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2021