ACS Medicinal Chemistry Letters
Letter
and are both crucial for methylation of euchromatin at H3-K9. Gene
Dev. 2005, 19 (7), 815−26.
(6) Huang, J.; Dorsey, J.; Chuikov, S.; Perez-Burgos, L.; Zhang, X.;
Jenuwein, T.; Reinberg, D.; Berger, S. L. G9a and Glp methylate lysine
373 in the tumor suppressor p53. J. Biol. Chem. 2010, 285 (13), 9636−
41.
(7) Lee, J. S.; Kim, Y.; Kim, I. S.; Kim, B.; Choi, H. J.; Lee, J. M.;
Shin, H. J.; Kim, J. H.; Kim, J. Y.; Seo, S. B.; Lee, H.; Binda, O.;
Gozani, O.; Semenza, G. L.; Kim, M.; Kim, K. I.; Hwang, D.; Baek, S.
H. Negative regulation of hypoxic responses via induced Reptin
methylation. Mol. Cell 2010, 39 (1), 71−85.
(8) Tachibana, M.; Sugimoto, K.; Nozaki, M.; Ueda, J.; Ohta, T.;
Ohki, M.; Fukuda, M.; Takeda, N.; Niida, H.; Kato, H.; Shinkai, Y. G9a
histone methyltransferase plays a dominant role in euchromatic
histone H3 lysine 9 methylation and is essential for early embryo-
genesis. Gene Dev. 2002, 16 (14), 1779−91.
(9) Tachibana, M.; Nozaki, M.; Takeda, N.; Shinkai, Y. Functional
dynamics of H3K9 methylation during meiotic prophase progression.
EMBO J. 2007, 26 (14), 3346−59.
(10) Thomas, L. R.; Miyashita, H.; Cobb, R. M.; Pierce, S.;
Tachibana, M.; Hobeika, E.; Reth, M.; Shinkai, Y.; Oltz, E. M.
Functional analysis of histone methyltransferase g9a in B and T
lymphocytes. J. Immunol. 2008, 181 (1), 485−93.
that the compounds bind as presumed in the SAM binding
pocket despite the observed noncompetitive inhibition and to
perform in vivo studies.
ASSOCIATED CONTENT
* Supporting Information
■
S
Detailed information about compound synthesis, character-
ization, protein purification, assay procedure, and data analysis.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Authors
■
Present Address
∥(J.B.) Department of International Health, Immunology and
Microbiology, University of Copenhagen, Blegdamsvej 3, DK-
2200 Copenhagen, Denmark.
Funding
(11) Lehnertz, B.; Northrop, J. P.; Antignano, F.; Burrows, K.;
Hadidi, S.; Mullaly, S. C.; Rossi, F. M.; Zaph, C. Activating and
inhibitory functions for the histone lysine methyltransferase G9a in T
helper cell differentiation and function. J. Exp. Med. 2010, 207 (5),
915−22.
(12) Schaefer, A.; Sampath, S. C.; Intrator, A.; Min, A.; Gertler, T. S.;
Surmeier, D. J.; Tarakhovsky, A.; Greengard, P. Control of cognition
and adaptive behavior by the GLP/G9a epigenetic suppressor
complex. Neuron 2009, 64 (5), 678−91.
Funding provided by University of Copenhagen for the Ph.D.
fellowship and the Danish Cancer Society, the University of
Copenhagen Programme of Excellence, and the Ministry of
Science and Technology of China (2009ZX09302-001,
2012ZX09304011, and 2013ZX09507002) for grant support.
Notes
The authors declare no competing financial interest.
(13) Kleefstra, T.; Smidt, M.; Banning, M. J.; Oudakker, A. R.; Van
Esch, H.; de Brouwer, A. P.; Nillesen, W.; Sistermans, E. A.; Hamel, B.
C.; de Bruijn, D.; Fryns, J. P.; Yntema, H. G.; Brunner, H. G.; de Vries,
B. B.; van Bokhoven, H. Disruption of the gene Euchromatin Histone
Methyl Transferase1 (Eu-HMTase1) is associated with the 9q34
subtelomeric deletion syndrome. J. Med. Genet. 2005, 42 (4), 299−
306.
(14) Kleefstra, T.; Brunner, H. G.; Amiel, J.; Oudakker, A. R.;
Nillesen, W. M.; Magee, A.; Genevieve, D.; Cormier-Daire, V.; van
Esch, H.; Fryns, J. P.; Hamel, B. C.; Sistermans, E. A.; de Vries, B. B.;
van Bokhoven, H. Loss-of-function mutations in euchromatin histone
methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion
syndrome. Am. J. Hum. Genet. 2006, 79 (2), 370−7.
(15) Watanabe, H.; Soejima, K.; Yasuda, H.; Kawada, I.; Nakachi, I.;
Yoda, S.; Naoki, K.; Ishizaka, A. Deregulation of histone lysine
methyltransferases contributes to oncogenic transformation of human
bronchoepithelial cells. Cancer Cell Int. 2008, 8, 15.
(16) Chen, M. W.; Hua, K. T.; Kao, H. J.; Chi, C. C.; Wei, L. H.;
Johansson, G.; Shiah, S. G.; Chen, P. S.; Jeng, Y. M.; Cheng, T. Y.; Lai,
T. C.; Chang, J. S.; Jan, Y. H.; Chien, M. H.; Yang, C. J.; Huang, M. S.;
Hsiao, M.; Kuo, M. L. H3K9 histone methyltransferase G9a promotes
lung cancer invasion and metastasis by silencing the cell adhesion
molecule Ep-CAM. Cancer Res. 2010, 70 (20), 7830−40.
(17) Greiner, D.; Bonaldi, T.; Eskeland, R.; Roemer, E.; Imhof, A.
Identification of a specific inhibitor of the histone methyltransferase
SU(VAR)3−9. Nat. Chem. Biol. 2005, 1 (3), 143−5.
(18) Kubicek, S.; O’Sullivan, R. J.; August, E. M.; Hickey, E. R.;
Zhang, Q.; Teodoro, M. L.; Rea, S.; Mechtler, K.; Kowalski, J. A.;
Homon, C. A.; Kelly, T. A.; Jenuwein, T. Reversal of H3K9me2 by a
small-molecule inhibitor for the G9a histone methyltransferase. Mol.
Cell 2007, 25 (3), 473−81.
(19) Chang, Y.; Ganesh, T.; Horton, J. R.; Spannhoff, A.; Liu, J.; Sun,
A.; Zhang, X.; Bedford, M. T.; Shinkai, Y.; Snyder, J. P.; Cheng, X.
Adding a lysine mimic in the design of potent inhibitors of histone
lysine methyltransferases. J. Mol. Biol. 2010, 400 (1), 1−7.
(20) Liu, F.; Chen, X.; Allali-Hassani, A.; Quinn, A. M.; Wigle, T. J.;
Wasney, G. A.; Dong, A.; Senisterra, G.; Chau, I.; Siarheyeva, A.;
ACKNOWLEDGMENTS
■
We are grateful to the Novo Nordisk Foundation Center for
Protein Research and Department of Health Sciences,
University of Copenhagen for the Ph.D. fellowship, Dr.
Thomas Frimurer for valuable inputs in designing the
analogues, Ms. Huili Lu and Ms. Jie Zhang for technical
assistance, the Danish Cancer Society, the University of
Copenhagen Programme of Excellence and the Ministry of
Science and Technology of China (2009ZX09302-001,
2012ZX09304011, and 2013ZX09507002) for grant support,
and the EU COST-action TD0905, for providing a vital
Epigenetic focused network.
ABBREVIATIONS
■
TSA, p-toluenesulfonic acid; BzCl, benzoylchloride; DCA,
dichloroacetic acid; DCC, dicyclohexylcarbodiimide; BSA,
N,O-bis(trimethylsilyl)acetamide; TFA, trifluoroactic acid;
TMS, trimethylsilyl; AC, acetone; TEA, triethylamine
REFERENCES
■
(1) Kouzarides, T. Chromatin modifications and their function. Cell
2007, 128 (4), 693−705.
(2) Jenuwein, T.; Allis, C. D. Translating the histone code. Science
2001, 293 (5532), 1074−80.
(3) Rea, S.; Eisenhaber, F.; O’Carroll, D.; Strahl, B. D.; Sun, Z. W.;
Schmid, M.; Opravil, S.; Mechtler, K.; Ponting, C. P.; Allis, C. D.;
Jenuwein, T. Regulation of chromatin structure by site-specific histone
H3 methyltransferases. Nature 2000, 406 (6796), 593−9.
(4) Huang, J.; Berger, S. L. The emerging field of dynamic lysine
methylation of non-histone proteins. Curr. Opin. Genet. Dev. 2008, 18
(2), 152−8.
(5) Tachibana, M.; Ueda, J.; Fukuda, M.; Takeda, N.; Ohta, T.;
Iwanari, H.; Sakihama, T.; Kodama, T.; Hamakubo, T.; Shinkai, Y.
Histone methyltransferases G9a and GLP form heteromeric complexes
296
dx.doi.org/10.1021/ml4002503 | ACS Med. Chem. Lett. 2014, 5, 293−297