a sterically more demanding second methyl group at N2 led to
compound 12, which did not display a geminal coupling of the
Gly methylene protons. As the N2 substituents in 12 are
identical (R2 = R3 = Me), no atropisomers can be formed
as a matter of principle. Further enlargement of the substitu-
tion was achieved in 13 with an ethyl and a methyl group
(R2 a R3) at the terminal N2 nitrogen. This ordinary carbo-
hydrazide already showed diastereotopicity. A VT NMR
(300 MHz) experiment with compound 13 was performed,
yielding a rotational barrier of 87 kJ molÀ1 (see ESIw).
The minimum energy conformations of selected compounds
(6–9, 11, 13) were computed at the non-local density func-
tional level of theory, and the Gibbs free energy barriers of
rotation around the N–N axis were calculated. Two rotational
barriers were obtained in the cases of 9, 13 and 8. The energies
of the corresponding transition states are 121 and 124 kJ molÀ1
(9), 90 and 92 kJ molÀ1 (13) and 57 and 90 kJ molÀ1 (8). These
values reflect the decreasing conformational restriction with
respect to the N–N rotation as determined for 9, 13 and 8 in
the VT NMR experiments. Our NMR results regarding the
chemical equivalence of the Gly methylene protons of 6, 7 and
11 are also in agreement with the calculations. No barrier of
rotation in the case of 6 and only one (48 kJ molÀ1) in the case
of 7 was found. Two rotational barriers for 11 (42 and
62 kJ molÀ1) were determined. However, the energy barrier
of 42 kJ molÀ1 is not high enough to introduce diastereotopicity
at 303 K.
The authors are grateful to C. Schmidt and S. Terhart-
Krabbe for assistance. G.S. thanks Prof. A. C. Filippou for
support. This work has been supported by the German
Research Foundation (GRK 804).
Notes and references
¨
1 (a) O. D. Ekici, Z. Z. Li, A. J. Campbell, K. E. James, J. L. Asgian,
J. Mikolajczyk, G. S. Salvesen, R. Ganesan, S. Jelakovic,
M. G. Grutter and J. C. Powers, J. Med. Chem., 2006, 49, 5728;
¨
(b) R. Loser, M. Frizler, K. Schilling and M. Gutschow, Angew.
¨
¨
Chem., Int. Ed., 2008, 47, 4331; (c) C. Proulx and W. D. Lubell,
Org. Lett., 2010, 12, 2916; (d) M. Frizler, F. Lohr, M. Lulsdorff
¨
and M. Gutschow, Chem.–Eur. J., 2011, 17, 11419; (e) C. Proulx,
¨
D. Sabatino, R. Hopewell, J. Spiegel, Y. G. Ramos and
W. D. Lubell, Future Med. Chem., 2011, 3, 1139; (f) D. Sabatino,
C. Proulx, P. Pohankova, H. Ong and W. D. Lubell, J. Am. Chem.
Soc., 2011, 133, 12493.
2 (a) M. Thormann and H.-J. Hofmann, THEOCHEM, 1999,
469, 63; (b) H.-J. Lee, J.-W. Song, Y.-S. Choi, H.-M. Park and
K.-B. Lee, J. Am. Chem. Soc., 2002, 124, 11881; (c) H.-J. Lee,
J.-H. Kim, H.-J. Jung, K.-Y. Kim, E.-J. Kim, Y.-S. Choi and
C.-J. Yoon, J. Comput. Chem., 2004, 25, 169; (d) C. H. Reynolds
and R. E. Hormann, J. Am. Chem. Soc., 1996, 118, 9395;
(e) H.-J. Lee, M.-H. Lee, Y.-S. Choi, H.-M. Park and K.-B. Lee,
THEOCHEM, 2003, 631, 101.
3 (a) R. Vanderesse, V. Grand, D. Limal, A. Vicherat, M. Marraud,
C. Didierjean and A. Aubry, J. Am. Chem. Soc., 1998, 120, 9444;
(b) C. Hemmerlin, M. T. Cung and G. Boussard, Tetrahedron
Lett., 2001, 42, 5009; (c) H.-J. Lee, K.-H. Choi, I.-A. Ahn, S. Ro,
H. G. Jang, Y.-S. Choi and K.-B. Lee, J. Mol. Struct., 2001,
569, 43; (d) S. Ro, H.-J. Lee, I.-A. Ahn, D.-K. Shin, K.-B. Lee,
C.-J. Yoon and Y.-S. Choi, Bioorg. Med. Chem., 2001, 9, 1837;
(e) R. L. Broadrup, B. Wang and W. P. Malachowski, Tetra-
hedron, 2005, 61, 10277.
4 (a) M. O. Forster and W. B. Saville, J. Chem. Soc. Abstr., 1920,
117, 753; (b) K. A. Jensen, Acta Chem. Scand. Ser. B, 1977, 31, 145.
5 C. Didierjean, A. Aubry, F. Wyckaert and G. Boussard, J. Pept.
Res., 2000, 55, 308.
As compound 9 forms two atropenantiomers according to
line-shape analysis and theoretical calculations, introduction
of a further chiral element leads to diastereomers. Accordingly,
we have prepared Cbz-L-Phe-Gly[CCONMe]-azaAla-NH2
(14) and (1S,3S,4R-menthyloxycarbonyl)-Gly[CCONMe]-
azaAla-NH2 (15). Moreover, the Gly fragment of 9 was
replaced by L-Phe to obtain Cbz-L-Phe[CCONMe]-azaAla-
NH2 (16). In fact, these three peptides displayed a doubling of
1H and 13C NMR resonances (see ESIw).
To prove atropisomerism in azadipeptides by a further
technique, chiral HPLC of Cbz-Gly[CCONMe]-azaAla-NH2
(9) was performed. The existence of two different atropenan-
tiomers could be concluded from the chromatogram, whereas
achiral HPLC gave only one peak. As expected, the related
but, due to two identical substituents, non-chiral compound 12
showed only one peak under chiral as well as achiral HPLC
conditions. Cbz-L-Phe[CCONMe]-azaAla-NH2 (16), as a pair
of atropdiastereomers, gave two peaks in chiral and achiral
chromatography (see ESIw).
6 (a) M. P. Coogan and S. C. Passey, J. Chem. Soc., Perkin Trans. 2,
2000, 2060. For seminal works on rotational barriers of hydrazine
derivatives, see; (b) G. J. Bishop, B. J. Price and I. O. Sutherland,
Chem. Commun., 1967, 672; (c) J. R. Fletcher and I. O. Sutherland,
J. Chem. Soc. D, 1969, 706.
7 Atropisomers exhibit rotational barriers higher than about 95 kJ molÀ1
at room temperature. (a) M. Oki, Top. Stereochem., 1983, 14, 1;
(b) C. Wolf, Dynamic Stereochemistry of Chiral Compounds, RSC
Publishing, Cambridge, UK, 2008.
8 (a) J. Clayden, W. J. Moran, P. J. Edwards and S. R. LaPlante,
Angew. Chem., Int. Ed., 2009, 48, 6398; (b) B. Paul, G. L. Butterfoss,
M. G. Boswell, P. D. Renfrew, F. G. Yeung, N. H. Shah, C. Wolf,
R. Bonneau and K. Kirshenbaum, J. Am. Chem. Soc., 2011,
133, 10910; (c) S. R. LaPlante, P. J. Edwards, L. D. Fader,
A. Jakalian and O. Hucke, ChemMedChem, 2011, 6, 505;
(d) S. R. LaPlante, L. D. Fader, K. R. Fandrick, D. R. Fadrick,
O. Hucke, R. Kemper, S. P. F. Miller and P. J. Edwards, J. Med.
Chem., 2011, 54, 7005; (e) H. Takahashi, S. Wakamatsu, H. Tabata,
T. Oshitari, A. Harada, K. Inoue and H. Natsugari, Org. Lett., 2011,
In summary, we have synthesized and analyzed structurally
reduced model azapeptides. Diastereotopicity was applied as a
sensor of chirality to reveal atropisomerism which originates
from a restricted rotation around the N–N bond. The E configu-
ration of the CO–NMe bond in such peptides causes the hindered
single-bond rotation. The stereochemical stability of atrop-
isomers increases with the size of the aza-amino acid residue.
The experimental results of this study may sensitize other
researchers in the field of drug discovery or peptide engineering
to the phenomenon of atropisomerism in azapeptides.
13, 760; (f) H. Steinmetz, K. Gerth, R. Jansen, N. Schlager, R. Dehn,
¨
¨
S. Reinecke, A. Kirschning and R. Muller, Angew. Chem., Int. Ed.,
2011, 50, 532; (g) E. W. D. Burke, G. A. Morris, M. A. Vincent,
I. H. Hillier and J. Clayden, Org. Biomol. Chem., 2012, 10, 716.
9 (a) H. Hope and T. Ottersen, Acta Crystallogr., Sect. B, 1978,
34, 3623; (b) K. Tanaka, Acta Crystallogr., Sect. B, 1978, 34, 2487;
(c) M. Eisenstein, Acta Crystallogr., Sect. B, 1979, 35, 2614.
10 H.-J. Lee, H. J. Jung, J. H. Kim, H.-M. Park and K.-B. Lee, Chem.
Phys., 2003, 294, 201.
11 J. Chatterjee, C. Gilon, A. Hoffman and H. Kessler, Acc. Chem.
Res., 2008, 41, 1331.
12 E. Licandro and D. Perdicchia, Eur. J. Org. Chem., 2004, 665.
c
5774 Chem. Commun., 2012, 48, 5772–5774
This journal is The Royal Society of Chemistry 2012