ChemComm
Communication
with monovalent galactosides (in the order of 10À4 M)11 that can be
explained on the basis of the ‘‘multivalency effect’’.
In conclusion, we developed an efficient orthogonal coupling
strategy based on the combination of thiol–ene and SN2 reactions.
By using an orthogonal approach, multifunctional dendrimers were
synthesized without the necessity for carrying out protection–
deprotection steps and hence the approach is applicable to the
construction of complex organic molecules. For the synthesis of
dendrimers 14, 15 and 19, unexplored carbohydrate AB4 building
blocks were used. Interestingly, glycodendrimer 19 exhibited high
affinity with the LecA lectin, highlighting the fact that globular
dendritic systems with a low number of generations could efficiently
serve as potent anti-adhesive agents against bacterial infections and
biofilm formation. The strategy clearly pinpoints the high efficiency
of sugars for the accelerated growth of multifunctional dendrimers
within limited generation.
This work was supported by NSERC Canada.
Notes and references
¨
1 (a) G. R. Newkome, C. N. Moorefield and F. Vogtle, Dendrimers and
Dendrons: Concepts, Synthesis, Applications, Wiley-VCH, New York,
´
2001; (b) J. M. J. Frechet and D. Tomalia, Dendrimers and Other
Dendritic Polymers, John Wiley Sons, New York, 2001;
&
(c) Y. M. Chabre and R. Roy, Adv. Carbohydr. Chem. Biochem.,
2010, 63, 165–393; (d) Y. M. Chabre and R. Roy, Curr. Top. Med.
Chem., 2008, 8, 1237–1285.
2 (a) C.-H. Wong and S. C. Zimmerman, Chem. Commun., 2013, 49,
1679–1695; (b) F. Zeng and S. C. Zimmerman, J. Am. Chem. Soc.,
1996, 118, 5326–5327; (c) K. L. Wooley, C. J. Hawker and
´
J. M. J. Frechet, Angew. Chem., Int. Ed. Engl., 1994, 33, 82–85;
(d) A. Carlmark, C. Hawker, A. Hult and M. Malkoch, Chem. Soc.
Scheme 4 Synthesis of dendrimer 19 with 24-galactosides.
¨
Rev., 2009, 38, 352–362; (e) P. Antoni, D. Nystrom, C. J. Hawker, A. Hult
and M. Malkoch, Chem. Commun., 2007, 2249–2251; ( f ) K. L. Killops,
L. M. Campos and C. J. Hawker, J. Am. Chem. Soc., 2008, 130,
5062–5064; (g) T. Kang, R. J. Amir, A. Khan, K. Ohshimizu,
Finally, the photocapping of both G(1) (11) and G(2) (13) dendri-
mers with thioglycerol under standard conditions followed by dialysis
(1.0 kDa cut-off) afforded the desired polyhydroxylated dendrimers 14
˜
J. N. Hunt, K. Sivanandan, M. I. Montanez, M. Malkoch, M. Ueda
and C. J. Hawker, Chem. Commun., 2010, 46, 1556–1558; (h) P. Antoni,
¨
M. J. Robb, L. Campos, M. Montanez, A. Hult, E. Malmstrom,
1
and 15. Once again, H- and 13C-NMR spectra clearly indicated the
M. Malkoch and C. J. Hawker, Macromolecules, 2010, 43, 6625–6631;
(i) J. W. Chan, C. E. Hoyle and A. B. Lowe, J. Am. Chem. Soc., 2009, 131,
absence of the olefinic protons, highlighting completion of the final
multiple thiol–ene process in an excellent yield (>99% per addition).
In parallel, the thiol–ene reaction between 17 and thiogalactoside 189
provided glycodendrimer 19 having 24-appended sugar residues in a
single step. The glycodendrimer was purified from excess thiol or
disulphide through dialysis with a 2.5 kDa cutoff membrane. Notably,
during the synthesis of dendrimers 14, 15 and 19, a carbohydrate (8)
has been used as a highly functionalizable intermediate building
block (AB4), a situation not frequently encountered in the literature.
Moreover, varying the type of building block between each generation
of dendrimers has not been sufficiently exploited yet and we wish to
coin this strategy as ‘‘an onion peel approach’’.
Following our synthesis, the improved protein binding properties
of galactodendrimer 19 were evaluated using a galactoside specific
bacterial lectin, LecA extracted from P. aeruginosa,10 by surface
plasmon resonance (SPR). For the interaction studies, the lectin
was immobilized onto the surface of a CM5 sensor chip through
usual amine coupling (see ESI†) and the corresponding sensorgrams
for the specific interactions are shown in Fig. S1 (ESI†). The KD value
derived from the fitting of sensorgrams in a 1 : 1 Langmuir model
was found to be 230 nM, which is significantly higher in comparison
¨
5751–5753; ( j) A. Carlmark, E. Malmstrom and M. Malkoch, Chem.
Soc. Rev., 2013, 42, 5858–5879; (k) M. V. Walter and M. Malkoch, Chem.
Soc. Rev., 2012, 41, 4593–4609.
3 G. Barany and R. B. Merrifield, J. Am. Chem. Soc., 1977, 99,
7363–7365.
4 L. A. Carpino and G. Y. Han, J. Org. Chem., 1972, 37, 3404–3409.
5 (a) C. E. Hoyle and C. N. Bowman, Angew. Chem., Int. Ed., 2010, 49,
1540–1573; (b) C. E. Hoyle, T. Y. Lee and T. Roper, J. Polym. Sci., Part
A: Polym. Chem., 2004, 42, 5301–5338; (c) M. Gingras, Y. M. Chabre,
M. Roy and R. Roy, Chem. Soc. Rev., 2013, 42, 4823–4841;
˜
(d) M. H. Stenzel, ACS Macro Lett., 2013, 2, 14–18; (e) M. I. Montanez,
L. M. Campos, P. Antoni, Y. Hed, M. V. Walter, B. T. Krull, A. Khan,
A. Hult and C. J. Hawker, Macromolecules, 2010, 43, 6004–6013.
6 A. El Alaoui, F. Schmidt, M. Sarr, D. Decaudin, J.-C. Florent and
L. Johannes, ChemMedChem, 2008, 3, 1687–1695.
7 (a) W. Wang, H. Wang, C. Ren, J. Wang, M. Tan, J. Shen, Z. Yang,
P. G. Wang and L. Wang, Carbohydr. Res., 2011, 346, 1013–1017;
(b) S. Park and I. Shin, Org. Lett., 2007, 9, 1675–1678.
´
8 Y. M. Chabre, C. Contino-Pepin, V. Placide, T. C. Shiao and R. Roy,
J. Org. Chem., 2008, 73, 5602–5605.
9 S. S. Mahajan and S. S. Iyer, J. Carbohydr. Chem., 2012, 31, 447–465.
10 B. Blanchard, A. Nurisso, E. Hollville, C. Tetaud, J. Wiels,
´
´
´
M. Pokorna, M. Wimmerova, A. Varrot and A. Imberty, J. Mol. Biol.,
2008, 383, 837–853.
`
11 J. Rodrigue, G. Ganne, B. Blanchard, C. Saucier, D. Giguere,
T. C. Shiao, A. Varrot, A. Imberty and R. Roy, Org. Biomol. Chem.,
2013, 11, 6906–6918.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 1983--1985 | 1985