UPDATES
Carissa S. Hampton and Michael Harmata
[7] a) M. Harmata, Z. Cai, C. Huang, K. M. Brummond, B.
Wen, Org. Synth. 2011, 88, 309–316; b) M. Harmata, C.
Huang, Adv. Synth. Catal. 2008, 350, 972–974.
2010, 2010, 6338–6347; c) S. Chassaing, M. Kumarraja,
A. S. S. Sido, P. Pale, J. Sommer, Org. Lett. 2007, 9,
883–886; d) S. Chassaing, A. S. S. Sido, A. Alix, M. Ku-
marraja, P. Pale, J. Sommer, Chem. Eur. J. 2008, 14,
6713–6721; e) M. Keller, A. S. S. Sido, P. Pale, J.
Sommer, Chem. Eur. J. 2009, 15, 2810–2817; f) K. Na-
mitharan, K. Pitchumani, Adv. Synth. Catal. 2013, 355,
93–98.
[8] a) M. Harmata, C. B. Gamlath, J. Org. Chem. 1988, 53,
6154–6156; b) M. Harmata, C. B. Gamlath, C. L.
Barnes, Tetrahedron Lett. 1990, 31, 5981–5984; c) M.
Harmata, C. B. Gamlath, C. L. Barnes, Tetrahedron
Lett. 1993, 34, 265–268; d) M. Harmata, B. F. Herron, J.
Org. Chem. 1993, 58, 7393–7396; e) M. Harmata, B. F.
Herron, Tetrahedron Lett. 1993, 34, 5381–5384; f) M.
Harmata, B. F. Herron, Synthesis 1993, 202–204.
[14] S. Borghese, P. Drouhin, V. Beneteau, B. Louis, P. Pale,
Green Chem. 2013, 15, 1496–1500.
[15] M. Niwa, K. Suzuki, K. Isamoto, N. Katada, J. Phys.
[9] M. Harmata, (Ed.), Silver In Organic Chemistry, John
Chem. B 2006, 110, 264–269.
Wiley & Sons, Inc., Hoboken, 2010.
[10] P. Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39, 301–
312.
[16] The Ag1-USY zeolite catalyst contains 1.02 mmol of
silver cation per gram of zeolite. Catalyst loadings are
based on molar equivalents of silver cation used. The
Ag1-USY was prepared by the Pale group as detailed
in ref.[14]
[11] a) S. Chassaing, A. Alix, A. Olmos, M. Keller, J.
Sommer, P. Pale, Z. Naturforsch. B: 2010, 65, 783–790;
b) P. Kuhn, P. Pale, J. Sommer, B. Louis, J. Phys. Chem.
C 2009, 113, 2903–2910; c) R. Maggi, A. Bello, C. Oro,
G. Sartori, L. Soldi, Tetrahedron 2008, 64, 1435–1439;
d) P. Pale, S. Chassaing, A. Alix, T. Boningari, K. Sani
Souna Sido, M. Keller, P. Kuhn, B. Louis, J. Sommer,
Synthesis 2010, 1557–1567; e) M. K. Patil, M. Keller,
B. M. Reddy, P. Pale, J. Sommer, Eur. J. Org. Chem.
2008, 4440–4445; f) P. Kuhn, A. Alix, M. Kumarraja, B.
Louis, P. Pale, J. Sommer, Eur. J. Org. Chem. 2009,
423–429; g) T. Sun, K. Seff, Chem. Rev. 1994, 94, 856–
870; h) P. J. Garegg, P. Ossowski, Acta Chem. Scand. B.
1983, 37, 249–250; i) P. J. Garegg, P. Ossowski, S.
Kopper, J. Thiem, J. Carbohydr. Chem. 1986, 5, 59–65.
[12] K. Tanabe, W. F. Holderich, Appl. Catal. A 1999, 181,
399–434.
[17] The inital silver tetrafluoroborate sample that was used
was deliquesced (Table 5, entries 2 and 16). The rear-
rangement proceeded very quickly and was complete
in 2 min. To ensure that any adsorbed water on the
silver salt was not contributing to the rate of reaction,
a new bottle of AgBF4 was purchased and the [2,3]sig-
matropic rearrangement was performed with the new
dry sample. The reaction was monitored by TLC every
minute and was completed within 2 min and yielded
the allenic sulfone in 97% yield. To learn the effect of
water on the reaction, 0.6 equivalents (10 mL) of water
was added to the AgBF4 (2 mol%) in dichloromethane
(9 mL, 0.1M) and stirred. Then the sulfinate ester was
added to the flask and the reaction mixture was stirred
at room temperature, monitoring by TLC every
minute. This reaction required 8 min to achieve com-
plete conversion and resulted in a 96% yield of the al-
lenic sulfone.
[13] a) A. Alix, S. Chassaing, P. Pale, J. Sommer, Tetrahe-
dron 2008, 64, 8922–8929; b) T. Boningari, A. Olmos,
B. M. Reddy, J. Sommer, P. Pale, Eur. J. Org. Chem.
4
ꢁ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 0000, 000, 0 – 0
ÝÝ
These are not the final page numbers!