ChemComm
Communication
with 1 in the presence of TMSOTf. Cleavage from the resin and Research Council (ERC Advanced Grant AUTOHEPARIN to P.H.S.)
HPLC analysis revealed that the glycosylation reaction had The authors would like to thank Dr Mark Schlegel and
proceeded with good selectivity (4: 1, major a). The a-anomeric Dr Claney Lebev Pereira for the fruitful discussion.
configuration of 5 was confirmed by comparison of the NMR
spectra of 5 with that of Fmoc-Thr(Ac3GalN3)-Ot-Bu.12b
After establishing that automated peptide glycosylation is
possible, glycopeptide 6 bearing a (Galb1-3GalNAcb-O) disaccharide
Notes and references
1 (a) J. R. Allen, C. R. Harris and S. J. Danishefsky, J. Am. Chem. Soc.,
was prepared. Commercially available amino acids were used along
with glycosylating agents 2 (prepared in three steps from a known
intermediate)13 and 3.14 The tetrapeptide backbone of 6 was
assembled using SPPS. Selective removal of the t-Bu group was
followed by glycosylation with glycosyl imidate 2 and TMSOTf
as an activator at À10 1C. The glycosylation reaction proceeded
with high conversion and yielded one major product. Removal
of the levulinoyl protecting group was followed by formation of
a second glycosidic linkage using galactosyl thioglycoside 3
activated by N-iodosuccinimide (NIS) and triflic acid (TfOH).
Progress of the automated synthesis of 6 was monitored by
cleaving small amounts of material from the solid support at
different stages of the synthesis followed by HPLC-MS (see ESI†).
Deprotection of the galactosamine by reduction of the azide
using AcSH,15 and benzylidene removal using TFA were carried
out manually after completion of the automated synthesis.
Finally, glycopeptide 6 was cleaved from the resin under UV
irradiation. The desired product 6 was obtained in 5.7%
2001, 123, 1890; (b) C. Brocke and H. Kunz, Synlett, 2003, 2052;
(c) N. Gaidzik, A. Kaiser, D. Kowalczyk, U. Westerlind, B. Gerlitzki,
H. P. Sinn, E. Schmitt and H. Kunz, Angew. Chem., Int. Ed., 2011,
50, 9977; (d) S. Ingale, M. A. Wolfert, J. Gaekwad, T. Buskas and
G. J. Boons, Nat. Chem. Biol., 2007, 3, 663; (e) B. Wu, J. H. Chen,
J. D. Warren, G. Chen, Z. H. Hua and S. J. Danishefsky, Angew.
Chem., Int. Ed., 2006, 45, 4116; ( f ) S. J. Danishefsky, K. F. Mcclure,
J. T. Randolph and R. B. Ruggeri, Science, 1993, 260, 1307.
2 (a) A. Kaiser, N. Gaidzik, T. Becker, C. Menge, K. Groh, H. Cai,
Y.-M. Li, B. Gerlitzki, E. Schmitt and H. Kunz, Angew. Chem., Int. Ed.,
2010, 49, 1; (b) P. M. St. Hilaire, L. Cipolla, A. Franco, U. Tedebark,
D. A. Tilly and M. Meldal, J. Chem. Soc., Perkin Trans. 1, 1999, 3559.
3 (a) P. A. Ashford and S. P. Bew, Chem. Soc. Rev., 2012, 41, 957;
(b) T. Buskas, S. Ingale and G. J. Boons, Glycobiology, 2006, 16, 113r;
(c) O. Seitz, ChemBioChem, 2000, 1, 215.
4 (a) R. Kaifu and T. Osawa, Carbohydr. Res., 1977, 58, 235; (b) R. Kaifu
and T. Osawa, Carbohydr. Res., 1979, 69, 79.
5 (a) D. Varon, E. Lioy, M. E. Patarroyo, X. Schratt and C. Unverzagt,
Aust. J. Chem., 2002, 55, 161; (b) Y. Vohra, T. Buskas and G. J. Boons,
J. Org. Chem., 2009, 74, 6064.
6 (a) K. M. Koeller, M. E. B. Smith, R. F. Huang and C.-H. Wong, J. Am.
Chem. Soc., 2000, 122, 4241; (b) L. A. Marcaurelle and C. R. Bertozzi,
Glycobiology, 2002, 12, 69R; (c) M. Schuster, P. Wang, J. C. Paulson
and C.-H. Wong, J. Am. Chem. Soc., 1994, 116, 1135; (d) C. Unverzagt,
S. Kelm and J. C. Paulson, Carbohydr. Res., 1994, 251, 285.
7 Y. Zhang, S. M. Muthana, D. Farnsworth, O. Ludek, K. Adams,
J. J. Barchi, Jr. and J. C. Gildersleeve, J. Am. Chem. Soc., 2012,
134, 6316.
1
isolated yield after HPLC purification. H-NMR coupling con-
stants and coupled CH-HSQC analysis clearly indicate that two
b-linkages were formed.
Since many glycopeptides harbor more than one glycosyla-
tion site, bis-glycosylated peptide 7 was targeted to challenge
the method. Fmoc-Thr(Trt)-OH and mannose thioglycoside 416
were employed twice. Placement of threonine on the solid
support was followed by Trt removal. Mannose thioglycoside
4 was attached using the NIS–TfOH activator mixture. Fmoc
removal and repetition of the assembly cycle gave glycopeptide
7 after light-induced cleavage from the solid support in 14%
yield after HPLC purification. NMR analysis proved that both
threonines were glycosylated in an a-selective manner.
An automated approach for the synthesis of O-glycopeptides
based on the combination of solid phase peptide and oligosacchar-
8 (a) H. Paulsen, A. Schleyer, N. Mathieux, M. Meldal and K. Bock,
J. Chem. Soc., Perkin Trans. 1, 1997, 281; (b) A. Schleyer, M. Meldal,
R. Manat, H. Paulsen and K. Book, Angew. Chem., Int. Ed., 1997,
36, 1976.
´
¨
9 (a) J. D. Codee, L. Krock, B. Castagner and P. H. Seeberger, Chem.–Eur. J.,
2008, 14, 3987; (b) N. V. Ganesh, K. Fujikawa, Y. H. Tan, K. J. Stine and
¨
A. V. Demchenko, Org. Lett., 2012, 14, 3036; (c) L. Krock, D. Esposito,
¨
B. Castagner, C.-C. Wang, P. Bindschadler and P. H. Seeberger, Chem. Sci.,
2012, 3, 1617; (d) O. J. Plante, E. R. Palmacci and P. H. Seeberger, Science,
2001, 291, 1523; (e) M. K. Schlegel, J. Hutter, M. Eriksson, B. Lepenies and
P. H. Seeberger, ChemBioChem, 2011, 12, 2791; ( f ) M. T. Walvoort, H. van
¨
den Elst, O. J. Plante, L. Krock, P. H. Seeberger, H. S. Overkleeft, G. A. van
´
der Marel and J. D. Codee, Angew. Chem., Int. Ed., 2012, 51, 4393.
10 C. G. Bochet, J. Chem. Soc., Perkin Trans. 1, 2002, 125.
11 S. Eller, M. Collot, J. Yin, H. S. Hahm and P. H. Seeberger, Angew.
Chem., Int. Ed., 2013, 52, 5858.
ide synthesis protocols can be executed on a single instrument. 12 (a) G. Grundler and R. R. Schmidt, Justus Liebigs Ann. Chem., 1984,
1826; (b) K. M. Koeller, M. E. B. Smith and C.-H. Wong, Bioorg. Med.
Chem., 2000, 8, 1017.
13 (a) Y. V. Mironov, A. A. Sherman and N. E. Nifantiev, Tetrahedron
Employing Merrifield polystyrene resin equipped with a photo-
cleavable linker allowed for the use of different leaving groups and
activation systems. The examples presented in this study demon-
strate the potential of a monomer based strategy for synthesizing
glycopeptides. This conceptual advancement, combined with
Lett., 2004, 45, 9107; (b) Y. V. Mironov, A. A. Sherman and
N. E. Nifantiev, Mendeleev Commun., 2008, 18, 241.
14 F. S. Ekholm, A. Arda, P. Eklund, S. Andre, H.-J. Gabius, J. Jimenez-
Barbero and R. Leino, Chem.–Eur. J., 2012, 18, 14392.
improved synthetic procedures, is expected to provide more 15 (a) H. Paulsen, T. Bielfeldt, S. Peters, M. Meldal and K. Bock, Liebigs
Ann. Chem., 1994, 369; (b) T. Rosen, I. M. Lico and D. T. W. Chu,
J. Org. Chem., 1988, 53, 1580.
16 O. Calin, S. Eller and P. H. Seeberger, Angew. Chem., Int. Ed., 2013,
expedient access to homogeneous glycopeptides in the future.
We gratefully thank the Max Planck Society, the Minerva Stiftung
(post-doctoral Minerva fellowship to M.H.) and the European
52, 5862.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 1851--1853 | 1853