(1)ZnCl2 (1b). Orange microcrystalline powder (65% yield).
1H NMR (CD2Cl2): d 8.20 (d, J 5.5 Hz, 2H, H6), 8.11 (br
s, 2H, H3), 7.60 (d, J 16 Hz, 2H, H8), 7.53 (d, J 9 Hz,
4H, H10), 7.18 (d, J 5.5 Hz, 2H, H5), 6.70 (d, J 16 Hz,
2H, H7), 6.67 (d, J 9 Hz, 4H, H11), 3.33 (t, J 7Hz, 8H,
H13), 1.60 (m, 8H, H14), 1.40 (m, 8H, H15), 0.97 (t, J 7.2
Hz, 12H, H16). 13C NMR (CD2Cl2): d 150.95 (C2), 149.56
(C12), 148.34 (C4), 147.45 (C6), 138.38 (C8), 129.68 (C10),
122.19 (C9), 122.50 (C5), 116.80 (C3), 117.25 (C7), 111.42
(C11), 50.72 (C13), 29.39 (C14), 20.27 (C15), 13.79 (C16).
Anal. calc. (found) for C42H54N4Cl2ZnÁH2O: C 65.77 (65.75),
H 7.36 (7.00), N 7.31 (7.40%).
Acknowledgements
The authors would like to thank the Region Bretagne and
France Telecom CNET for ®nancial support. We gratefully
acknowledge Brigitte Corre and Thomas Le Bouder for tech-
nical support.
References and notes
1
(a) Molecular Nonlinear Optics, Materials, Physics and Devices, ed.
J. Zyss, Academic Press, New York, 1994; (b) D. M. Burland,
Chem. Rev., 1994, 94, 1.
(1)Zn(OCOCH3)2 (1c). Orange microcrystalline powder (65%
yield). 1H NMR (CD2Cl2): d 8.51 (d, J 5.5 Hz, 2H, H6), 8.05
(br s, 2H, H3), 7.38 (d, J 16 Hz, 2H, H8), 7.44 (d, J 9 Hz,
4H, H10), 7.30 (d, J 5.5 Hz, 2H, H5), 6.73 (d, J 16 Hz, 2H,
H7), 6.64 (d, J 9 Hz, 4H, H11), 3.30 (t, J 7Hz, 8H, H13),
1.58 (m, 8H, H14), 1.35 (m, 8H, H15), 0.95 (t, J 7.2 Hz,
12H, H16), 1.99 (s, 6H, OCOCH3). 13C NMR (CD2Cl2): d
150.48 (C2), 149.37 (C12), 149.24 (C4), 148.82 (C6), 137.08
(C8), 129.26 (C10), 122.33 (C9), 121.89 (C5), 118.28 (C7),
117.31 (C3), 111.47 (C11), 50.70 (C13), 29.40 (C14), 20.29
(C15), 13.79 (C16), 179.80, 21.95 (OCOCH3). Anal. calc.
(found) for C42H54N4Cl2ZnÁH2O: C 67.68 (67.84), H 7.65
(7.48), N 6.86 (7.01%).
2
(a) J. L. Segura and N. Martin, J. Mater. Chem., 2000, 10, 2403; (b)
R. E. Martin, F. Diederich and F. Hide, Angew. Chem., Int. Ed.,
1999, 38, 1350; (c) A. Kraft, A. C. Grimsdale and A. B. Holmes,
Angew. Chem., Int. Ed., 1998, 37, 403; (d) M. A. Diaz-Garcia,
B. J. Schwartz and A. J. Heeger, Acc. Chem. Res., 1997, 30, 430.
(a) H. Ma, B. Chen, T. Sassa, L. R. Dalton and A. K.-Y. Jen,
J. Am. Chem. Soc., 2001, 123, 986; (b) Y. Q. Shi, C. Zhang,
H. Zang, J. H. Bechtel, L. R. Dalton, B. H. Robinson and
W. H. Steier, Science, 2000, 288, 119; (c) T. J. Marks and
M. A. Ratner, Angew. Chem., Int. Ed. Engl., 1995, 34, 155.
J. L. Bredas, Science., 1994, 263, 487.
3
4
5
(a) S. R. Marder, D. N. Beratan and L. T. Cheng, Science, 1991,
252, 103; (b) J. Roncali, Chem. Rev., 1997, 97, 173.
6
7
H. Le Bozec and T. Renouard, Eur. J. Inorg. Chem., 2000, 229.
(a) A. Hilton, T. Renouard, O. Maury, H. Le Bozec, I. Ledoux
and J. Zyss, Chem. Commun., 1999, 2521; (b) M. Bourgault,
K. Baum, H. Le Bozec, G. Pucetti, I. Ledoux and J. Zyss, New
J. Chem., 1998, 22, 517.
(a) C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault
and H. Le Bozec, Nature (London), 1995, 374, 339; (b)
H. Le Bozec, T. Renouard, M. Bourgault, C. Dhenaut, S. Bras-
selet, I. Ledoux and J. Zyss, Synth. Met., 2001 in press.
T. Renouard, H. Le Bozec, I. Ledoux and J. Zyss, Chem. Com-
mun., 1999, 871.
(1)PdCl2 (1d). Red±orange microcrystalline powder (90%
yield). 1H NMR (CD2Cl2): d 8.93 (d, J 6.2 Hz, 2H, H6),
7.96 (br s, 2H, H3), 7.46 (d, J 16 Hz, 2H, H8), 7.46 (d,
8
3
4
J 8.9 Hz, 4H, H10), 7.34 (dd, J 6.2 Hz, J 1.5 Hz, 2H,
H5), 6.84 (d, J 16 Hz, 2H, H7), 6.63 (d, J 8.9 Hz, 4H,
H11), 3.30 (t, J 7.5 Hz, 8H, H13), 1.56 (m, 8H, H14), 1.34
(m, 8H, H15), 0.94 (tr, J 7.2 Hz, 12H, H16). 13C NMR
(CD2Cl2): d 156.21 (C2), 149.89 (C12), 149.76 (C4), 149.60
(C6), 138.28 (C8), 129.64 (C10), 121.99 (C9), 121.45 (C5),
118.40 (C3), 117.33 (C7), 111.52 (C11), 50.74 (C13), 29.40
(C14), 20.28 (C15), 13.76 (C16). Anal. calc. (found) for
C42H54N4Cl2PdÁH2O: C 62.26 (62.19), H 6.97 (6.78), N 6.91
(7.34%).
9
10 (a) R. Ziessel, A. Juris and M. Venturi, Inorg. Chem., 1998, 37,
5061; (b) N. Armaroli, L. De Cola, V. Balzani, J.-P. Sauvage,
C. O. Dietrich-Buchecker, J.-M. Kern and A. Bailal, J. Chem.,
Soc., Dalton Trans., 1993, 3241.
11 H. S. Joshi, R. Jamshidi and Y. Tor, Angew. Chem., Int. Ed., 1999,
38, 2722.
12 A.-J. Attias, P. Hapiot, V. Witgens and P. Valat, Chem. Mater.,
2000, 12, 461.
(1)Re(CO)3Cl (1e). Re(CO)5Cl (88 mg, 24 mmol) and 1 (150
mg, 24 mmol, 1 equiv.) were stirred overnight in re¯uxing
toluene (5 mL). The red solution was concentrated and the
complex was precipitated upon addition of pentane (20 mL).
After recrystallization from dichoromethane±pentane 1e was
obtained as a red microcrystalline powder (130 mg, 57%).
1H NMR (CD2Cl2): d (d, J 5.9 Hz, 2H, H6), 8.05 (br s,
2H, H3), 7.56 (d, J 8.8 Hz, 4H, H10), 7.29 (d, J 16.3 Hz,
2H, H8), 6.79 (d, J 5.9 Hz, 2H, H5), 6.69 (d, J 8.8 Hz,
4H, H11), 6.52 (d, J 16.3 Hz, 2H, H7), 3.31 (t, J 7.7 Hz,
8H, H13), 1.58 (m, 8H, H14), 1.3 (m, 8H, H15), 0.94 (t,
J 7.2 Hz, 12H, H16). 13C NMR (CD2Cl2 53.45): d 198.3
(CO equatorial), 191.0 (CO axial), 155.7 (C2), 151.5 (C6),
149.5 (C12), 149.0 (C4), 137.8 (C8), 129.8 (C10), 123.0 (C5),
122.5 (C9), 118.8 (C3), 117.3 (C7), 111.7 (C11), 50.8 (C13),
29.4 (C14), 20.3 (C15), 13.8 (C16). Anal. calc. (found) for
C45H54N4O3ClRe: C 58.71 (58.25), H 5.91 (5.79), N 6.09
(5.95%).
[(1)ReO3]2-m2-O (1f). Deep purple microcrystalline powder.
(80% yield). 1H NMR (CD2Cl2): d 8.28 (d, J 5.6 Hz, 2H,
H6), 8.23 (br s, 2H, H3), 7.36 (d, J 8.8 Hz, 4H, H10), 7.37
(d, J 16 Hz, 2H, H8), 7.22 (d, J 5.6 Hz, 2H, H5), 6.64 (d,
J 16 Hz, 2H, H7), 6.54 (d, J 8.8 Hz, 4H, H11), 3.2 (t,
J 6.7 Hz, 8H, H13), 1.5 (m, 8H, H14), 1.2 (br m, 8H,
H15), 0.90 (t, J 7.2 Hz, 12H, H16).13C NMR (CD2Cl2): d
151.72 (C4), 149.62 (C12), 147.10 (C2), 144.95 (C6), 138.69
(C8), 129.98 (C10), 122.32 (C9), 121.14 (C5), 118.32 (C3),
117.77 (C7), 111.48 (C11), 50.74 (C13), 29.39 (C14), 20.26
(C15), 13.76 (C16). IR (KBr): n(ReO) 911.5 (vs), 967 (w)
cm 1. Anal. calc. (found) for C84H108N8O7Re2ÁCH2Cl2 : C
56.74 (57.20), H 6.16 (6.46), N 6.41 (6.23%).
13 (a) A. Juris, S. Campagna, I. Bidd, J.-M. Lehn and R. Ziessel,
Inorg. Chem., 1988, 27, 4007; (b) M. Bourgault, T. Renouard,
B. Lognone, C. Mountassir and H. Le Bozec, Can. J. Chem., 1997,
75, 318.
14 A.-J. Attias, C. Cavally, B. Bloch, N. Guillou and C. Noel, Chem.
Mater., 1999, 11, 2057.
15 For a preliminary communication see: P. Dupau, T. Renouard
and H. Le Bozec, Tetrahedron Lett., 1996, 37, 7503.
16 (a) O. Kocian, R. J. Mortimer and P. D. Beer, Tetrahedron Lett.,
1990, 31, 5069; (b) M. Harding, U. Koert, J.-M. Lehn,
A. Marquis-Rigault, C. Piguet and J. Siegel, Helv. Chim. Acta,
1992, 74, 594.
17 M. G. Vetelino and J. W. Coe, Tetrahedron Lett., 1994, 35, 219.
18 (a) For an analogous phosphonate synthesis see: S. Nijhuis,
G. L. A. Rikken, E. E. Havinga, W. Ten Hoeve, H. Wynberg and
E. W. Meijer, J. Chem. Soc., Chem. Commun., 1990, 1093;
(b) A. Ulman, C. S. Willand, W. Kohler, D. R. Robello,
D. J. Williams and L. Handley, J. Am. Chem. Soc., 1990, 112, 7083.
19 D. Prim, G. Kirsch and J.-F. Nicoud, Synth. Lett., 1998, 383.
20 In the case of 2, acidic impurities in deuterated chloroform are
able to promote the isomerization of the double bond. Such
phenomena are not observed in deuterated dichloromethane.
21 For analogous synthetic procedures of imino-containing dyes see:
S.-S. Chou, D.-J. Sun, H.-C. Lin and P.-K. Yang, Chem. Com-
mun., 1996, 1045.
22 (a) I. R. Whittall, M. G. Humphrey, A. Persoons and
S. Houbrechts, Organometallics, 1996, 15, 1935; (b) I. R. Whittall,
M. G. Humphrey, S. Houbrechts, A. Persoons and D. C. Hockless,
Organometallics, 1996, 15, 5738.
23 C. Colas and M. Goelner, Eur. J. Org. Chem., 1999, 1357.
24 P. Wehman, G. C. Dol, E. R. Morrman, P. C. J. Kramer,
P. W. N. M. V an Leeuwen, J. Fraanje and K. Goubitz, Organo-
metallics, 1994, 13, 4856.
25 H. Camren, M.-Y. Chang, L. Zen and E. McGuire, Synth. Com-
mun., 1996, 26, 1247.
New J. Chem., 2001, 25, 1553±1566
1565