Communication
Green Chemistry
and L.-B. Han, Org. Lett., 2006, 8, 2099; (k) Q. Xu and 11 For similar results, see: Y. Shi, R. Chen, K. Guo, F. Meng,
L.-B. Han, J. Organomet. Chem., 2011, 696, 130. S. Cao, C. Gu and Y. Zhu, Tetrahedron Lett., 2018, 59, 2062.
5 (a) H. R. Hays, J. Org. Chem., 1968, 33, 3690; (b) P. Rey, 12 H. Wang, Y. Li, Z. Tang, S. Wang, H. Zhang, H. Cong and
J. Taillades, J. C. Rossi and G. Gros, Tetrahedron Lett., 2003, A. Lei, ACS Catal., 2018, 8, 10599.
44, 6169; (c) D. H. Cho and D. O. Jang, Synlett, 2005, 59; 13 M.-J. Bu, G.-P. Lu and C. Cai, Catal. Sci. Technol., 2016, 6,
(d) L.-B. Han and C.-Q. Zhao, J. Org. Chem., 2005, 70, 413.
10121; (e) A. F. Parsons, D. J. Sharpe and P. Taylor, Synlett, 14 (a) D. Liu, J.-Q. Chen, X.-Z. Wang and P.-F. Xu, Adv. Synth.
2005, 2981; (f) M. I. Antczak and J. Montchamp, Synthesis,
2006, 3080; (g) H. C. Fisher, O. Berger, F. Gelat and
J. Montchamp, Adv. Synth. Catal., 2014, 356, 1199;
(h) S.-F. Zhou, D.-P. Li, K. Liu, J.-P. Zou and O. T. Asekun,
J. Org. Chem., 2015, 80, 1214; (i) Z. Li, F. Fan, Z. Zhang,
Catal., 2017, 359, 2773; (b) X.-C. Liu, K. Sun, X.-L. Chen,
W.-F. Wang, Y. Liu, Q.-L. Li, Y.-Y. Peng, L.-B. Qu and B. Yu,
Adv. Synth. Catal., 2019, 361, 3712; (c) R. Gorre,
D. Enagandhula, S. Balasubramanian and S. M. Akondi,
Org. Biomol. Chem., 2020, 18, 1354.
Y. Xiao, D. Liu and Z.-Q. Liu, RSC Adv., 2015, 5, 27853; 15 H.-F. Qian, C.-K. Li, Z.-H. Zhou, Z.-K. Tao, A. Shoberu and
( j) G.-Y. Zhang, C.-K. Li, D.-P. Li, R.-S. Zeng, A. Shoberu J.-P. Zou, Org. Lett., 2018, 20, 5947.
and J.-P. Zou, Tetrahedron, 2016, 72, 2972; (k) L. Mao, Y. Li 16 Y. Yin, W.-Z. Weng, J.-G. Sun and B. Zhang, Org. Biomol.
and S. Yang, Chin. J. Chem., 2017, 35, 316; (l) P.-Z. Zhang, Chem., 2018, 16, 2356.
L. Zhang, J.-A. Li, A. Shoberu, J.-P. Zou and W. Zhang, Org. 17 Q. Fu, Z.-Y. Bo, J.-H. Ye, T. Ju, H. Huang, L.-L. Liao and
Lett., 2017, 19, 5567; (m) N. Wang, L. Ye, Z.-L. Li, L. Li, D.-G. Yu, Nat. Commun., 2019, 10, 3592.
Z. Li, H.-X. Zhang, Z. Guo, Q.-S. Gu and X.-Y. Liu, Org. 18 For aldehyde catalysis in photochemical reactions, see:
Chem. Front., 2018, 5, 2810.
6 (a) C. M. Jessop, A. F. Parsons, A. Routledge and
D. J. Irvine, Eur. J. Org. Chem., 2006, 1547; (b) P. Troupa,
(a) M. A. Theodoropoulou, N. F. Nikitas and C. G. Kokotos,
Beilstein J. Org. Chem., 2020, 16, 833; (b) Z. Yuan, J. Liao,
H. Jiang, P. Cao and Y. Li, RSC Adv., 2020, 10, 35433.
G. Katsiouleri and S. Vassiliou, Synlett, 2015, 26, 19 (a) E. Arceo, E. Montroni and P. Melchiorre, Angew. Chem.,
2714.
Int. Ed., 2014, 53, 12064; (b) I. K. Sideri, E. Voutyritsa and
C. G. Kokotos, ChemSusChem, 2019, 12, 4194;
(c) V. Pirenne, I. Traboulsi, L. Rouvière, J. Lusseau,
S. Massip, D. M. Bassani, F. Robert and Y. Landais, Org.
Lett., 2020, 22, 575; (d) T. Yajima, M. Murase and Y. Ofuji,
Eur. J. Org. Chem., 2020, 3808; (e) N. F. Nikitas,
M. A. Theodoropoulou and C. G. Kokotos, Eur. J. Org.
Chem., 2021, 1168.
7 (a) T. Hirai and L.-B. Han, Org. Lett., 2007, 9, 53;
(b) Z. Huang, W. Liu, S. Li, Y. Yang, S. Guo and H. Cai,
Synlett, 2020, 31, 1295.
8 (a) A. N. Reznikov and N. K. Skvortsov, Russ. J. Gen. Chem.,
2008, 78, 320; (b) S. Kawaguchi, A. Nomoto, M. Sonoda and
A. Ogawa, Tetrahedron Lett., 2009, 50, 624; (c) P.-Y. Geant,
J.-P. Uttaro, S. Peyrottes and C. Mathé, Eur. J. Org. Chem.,
2017, 3850.
20 For a recent example of changing the light absorbing wave-
length of a simple catalyst by adjusting the substituents,
see: L. D. Elliott, S. Kayal, M. W. George and K. Booker-
Milburn, J. Am. Chem. Soc., 2020, 142, 14947.
9 For selected reviews, see: (a) J. M. R. Narayanam and
C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102;
(b) J. Xuan and W.-J. Xiao, Angew. Chem., Int. Ed., 2012, 51,
6828; (c) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, 21 Y.-J. Zhuang, J.-P. Qu and Y.-B. Kang, J. Org. Chem., 2020,
Chem. Rev., 2013, 113, 5322; (d) C. Wang and Z. Lu, Org. 85, 4386.
Chem. Front., 2015, 2, 179; (e) J. Xuan, Z.-G. Zhang and 22 See the ESI† for detailed reaction condition optimization.
W.-J. Xiao, Angew. Chem., Int. Ed., 2015, 54, 15632; 23 For selected reviews, see: (a) D. E. Metzler, M. Ikawa and
(f) K. L. Skubi, T. R. Blum and T. P. Yoon, Chem. Rev., 2016,
116, 10035; (g) N. A. Romero and D. A. Nicewicz, Chem.
Rev., 2016, 116, 10075; (h) I. K. Sideri, E. Voutyritsa and
E. E. Snell, J. Am. Chem. Soc., 1954, 76, 648; (b) R. A. John,
Biochim. Biophys. Acta, 1995, 1248, 81; (c) J. Liang, Q. Han,
Y. Tan, H. Ding and J. Li, Front. Mol. Biosci., 2019, 6, 1.
C. G. Kokotos, Org. Biomol. Chem., 2018, 16, 4596; 24 For recent applications of alkyl(aryl)phoshine oxide in tran-
(i) F. Strieth-Kalthoff, M. J. James, M. Teders, L. Pitzer and
F. Glorius, Chem. Soc. Rev., 2018, 47, 7190; ( j) Visible Light
Photocatalysis in Organic Chemistry, ed. C. R. J. Stephenson,
T. P. Yoon and D. W. C. MacMillan, Wiley-VCH, Weinheim,
2018; (k) Q.-Q. Zhou, Y.-Q. Zou, L.-Q. Lu and W.-J. Xiao,
sition metal mediated phosphinylation reaction, see:
(a) R. Beaud, R. J. Phipps and M. J. Gaunt, J. Am. Chem.
Soc., 2016, 138, 13183; (b) X.-T. Liu, Y.-Q. Zhang, X.-Y. Han,
S.-P. Sun and Q.-W. Zhang, J. Am. Chem. Soc., 2019, 141,
16584.
Angew. Chem., 2019, 58, 1586; (l) X.-Y. Yu, Q.-Q. Zhao, 25 A. N. Yarkevich, L. N. Petrova and S. O. Bachurin,
J. Chen, W.-J. Xiao and J.-R. Chen, Acc. Chem. Res., 2020,
53, 1066.
Russ. J. Gen. Chem., 2012, 82, 1659.
26 For alkynes with the less hindered R5 group, a (Z)-isomer of
a σ-bent vinyl radical intermediate would be dominant,
leading to cis-addition. For alkynes with the more hindered
R5 group, a π-linear vinyl radical or an (E)-isomer of a σ-
bent vinyl radical intermediate would be dominant due to
the steric impact, leading to trans-addition. See the follow-
10 (a) W. Yoo and S. Kobayashi, Green Chem., 2013, 15, 1844;
(b) G. Fausti, F. Morlet-Savary, J. Lalevée, A. Gaumont and
S. Lakhdar, Chem. – Eur. J., 2017, 23, 2144. For a review,
see: (c) B.-G. Cai, J. Xuan and W.-J. Xiao, Sci. Bull., 2019, 64,
337.
Green Chem.
This journal is © The Royal Society of Chemistry 2021