Angewandte
Chemie
See Supporting Information for full experimental procedures and
whereas under the conditions of catalysis (80–1208C) vinyl-
silane, particularly if added in excess, reacts preferentially
with the ruthenium hydride complex according to a well-
the 1H, 13C, and 29Si NMR spectra, the GC-MS traces, and the
elemental analysis data of the products.
À
documented process to yield a [Ru] Si complex (see, for
example, references [3,4]) and ethylene (see Scheme 4),
Received: September 1, 2006
À
Keywords: alkynes · C H activation · homogeneous catalysis ·
ruthenium · silanes
.
[1] a) B. Marciniec, C. Pietraszuk in Handbook On Metathesis (Ed.:
R. H. Grubbs), Wiley, Weinheim, 2003, ch. 2.13, and references
therein; b) B. Marciniec, C. Pietraszuk, Curr. Org. Chem. 2003, 7,
691 – 735, and references therein.
[2] B. Marciniec, Coord. Chem. Rev. 2005, 249, 2374 – 2390, and
references therein.
[3] Y. Wakatsuki, H. Yamazaki, M. Nakano, Y. Yamamoto, J. Chem.
Soc., Chem. Commun. 1991, 703 – 704.
[4] a) B. Marciniec, C. Pietraszuk, Organometallics 1997, 16, 4320 –
4326; b) B. Marciniec, C. Pietraszuk, J. Chem. Soc., Chem.
Commun. 1995, 2003 – 2004.
Scheme 4. Mechanism of the silylative coupling of alkynes with vinyl-
silicon compounds.
[5] a) B. Marciniec, M. Majchrzak, W. Prukała, M. Kubicki, D.
Chadyniak, J. Org. Chem. 2005, 70, 8550 – 8555; b) B. Marciniec,
D. Chadyniak, S. Krompiec, Tetrahedron Lett. 2004, 45, 4065 –
4068; c) M. Jankowska, B. Marciniec, C. Pietraszuk, J. Cytarska,
M. Zaidlewicz, Tetrahedron Lett. 2004, 45, 6615 – 6618; d) Y.
Itami, B. Marciniec, M. Kubicki, Organometallics 2003, 22,
3717 – 3722; e) Y. Itami, B. Marciniec, M. Kubicki, Chem. Eur. J.
2004, 10, 1239 – 1248.
À
À
which explains the catalytic activity of the [Ru] H/[Ru] Si
systems in the SCof alkynes. However, in the case of
phenylacetylene, the 1H NMR spectra of the equimolar
À
experiments indicate that its reaction with the [Ru] H
complex to form the vinylene complex occurs much faster
than with the [Ru] Si moiety and therefore we do not observe
the silylation of phenylacetylene under the conditions stud-
ied.
The results of the above experiments allow us to propose a
mechanism for the reaction of vinylsilicon compounds with
substituted acetylenes. The SCof alkynes with vinylsilane
involves insertion of the alkyne into the [Ru] Si bond with
subsequent b-H elimination to give silyl-substituted ethyne
[6] a) B. Marciniec, E. Małecka, Macromol. Rapid Commun. 1999,
À
´
20, 475 – 479; b) M. Majchrzak, Y. Itami, B. Marciniec, P. Pawluc,
Tetrahedron Lett. 2000, 41, 10303 – 10307; c) B. Marciniec, E.
´
Małecka, M. Scibiorek, Macromolecules 2003, 36, 5545 – 5550;
d) M. Majchrzak, B. Marciniec, Y. Itami, Adv. Synth. Catal. 2005,
347, 1285 – 1294.
[7] B. Marciniec, M. Jankowska, C. Pietraszuk, Chem. Commun.
2005, 663 – 665.
[8] B. Marciniec, H. Ławicka, M. Majchrzak, M. Kubicki, I.
Kownacki, Chem. Eur. J. 2006, 12, 244 – 250.
À
and the well-known insertion of a vinylsilicon compound into
[9] a) F. Kakiuchi, N. Chatani in Topics in Organometallic Chemis-
try, Vol. 11, Ruthenium Catalysts and Fine Chemistry (Eds.: C.
Bruneau, P. H. Dixneuf), Springer, Berlin, 2004, pp. 45 – 79, and
references therein; b) S. Murai, F. Kakiuchi, S. Sekine, Y.
Tanaka, A. Kamatani, M. Sonoda, N. Chatani, Nature 1993,
366, 529 – 531; c) F. Kakiuchi, M. Matsumoto, M. Sonoda, T.
Fukuyama, N. Chatani, S. Murai, N. Furukawa, Y. Seki, Chem.
Lett. 2000, 29, 750 – 751; d) J. W. Park, H. J. Chang, C. H. Jun,
Synlett 2006, 771 – 775.
[10] B. Marciniec, B. Dudziec, K. Szubert, Polish Patent P-380422,
2006.
[11] a) T. W. Greene, P. G. M. Wuts, Protective Groups in Organic
Synthesis, Wiley, New York, 1999; b) J. E. Casida, J. Agric. Food
Chem. 1991, 39, 1335 – 1341; c) J. C. Anderson, R. H. Munday, J.
Org. Chem. 2004, 69, 8971 – 8974.
[12] G. Brizius, U. H. F. Bunz, Org. Lett. 2002, 4, 2829 – 2831.
[13] a) A. A. Anreev, V. V. Konshin, N. V. Komarov, M. Rubin, C.
Brouwer, V. Gevorgyan, Org. Lett. 2004, 6, 421 – 424; b) L.-M.
Yang, L.-F. Huang, T.-Y. Luh, Org. Lett. 2004, 6, 1461 – 1463;
c) R. Shimizu, T. Fuchikami, Tetrahedron Lett. 2000, 41, 907 –
910; d) A. Fꢀrstner, C. Mathes, Org. Lett. 2001, 3, 221 – 223.
[14] M. D. Fletcher in Comprehensive Organic Functional Group
Transformations, Vol. 2 (Eds.: A. R. Katritzky, R. J. K. Taylor),
Elsevier, Oxford, 2005, pp. 1181 – 1189, and references therein.
[15] a) C. Bruneau in Topics in Organometallic Chemistry Vol. 11
(Eds.: C. Bruneau, P. H. Dixneuf), Springer, Berlin, 2004,
pp. 138 – 141, and references therein; b) C. Slugovc, K. Mereiter,
E. Zobetz, R. Schmidt, K. Kirchner, Organometallics 1996, 15,
À
the [Ru] H bond, and subsequent b-Si elimination of
ethylene. Dissociation of a phosphane (observed by GC-
MS) from the pentacoordinate [Ru] complexes I–IV and the
inactivity of the hexacoordinate [Ru] species V under these
reaction conditions suggest that only four-coordinate ruthe-
nium complexes are active catalysts for this process
(Scheme 4). This general mechanism is demonstrated by the
stoichiometric study of the insertion of a vinylsilicon com-
pound into the ruthenium hydride bond and the above-
À
described insertion of acetylene into the [Ru] Si bond.
In conclusion, we have shown that the general reaction
reported herein opens up a new catalytic route for the
À
activation of ꢀ C H bonds and, in combination with the well-
= À
known activation of C Si bonds, is an efficient method for
the selective synthesis of a variety of molecular compounds
with an acetylene functionality. The silylalkynyl derivatives
synthesized in this manner could play a very important role as
organometallic reagents in organic synthesis.[11a]
Experimental Section
General procedure: All experiments were performed under dry and
oxygen-free argon using standard Schlenk techniques for the
organometallic synthesis.
Angew. Chem. Int. Ed. 2006, 45, 8180 –8184
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
8183