M. I. Dawson et al. / Bioorg. Med. Chem. Lett. 10 (2000) 1307±1310
1309
ligand-binding domain that interacts with the retinoid
bridge.
the far more RXR-selective 8 requires the presence of an
RAR agonist suggests that activation of RXRa alone is
not sucient for inhibiting the growth of these cells. These
data also suggest that RXR/RARb panagonists, such as
9, alone or in combination with another therapeutic agent,
may be useful in cancer therapy, whereas more RXR-
selective retinoids, such as 8 and 10, may only be useful in
combination with an RAR-selective retinoid or another
agent. Interestingly, we found that 9 inhibited MDA-MB-
231 cell growth after seven days in culture with an IC50
value of 1.1 mM, whereas 12.5 mM 9-cis-RA gave only
45% inhibition.
Previously, we demonstrated that RXR-selective reti-
noids inhibit the growth of retinoid-resistant MDA-MB-
231 human breast cancer cells in part by activating
RXRa-nur77 heterodimers on the bRARE to induce the
expression of RARb,25 which is lost in many cancers. We
found that trans-RA had no eect on the growth of
MDA-MB-231 cells, largely due to their lack of RARb,25
and 8 alone did not inhibit growth. However, trans-RA
plus 8 produced signi®cant inhibition, as did the RAR/
RXR panagonist 9 alone (Fig. 2).
The synthesis of 7 from diaryl ketone 1 was reported.10
Retinoids 9 and 10 were similarly prepared in high
yields from ketones 1 and 13 as outlined in Scheme 1,
whereas the more sterically hindered 8 required a step-
wise procedure involving a vinyl bromide-aryl bromide
coupling.
Inhibition by 9 is likely due to its induction of RARb
expression through the RXR-nur77,25 followed by its
activation of the synthesized RARb protein that forms
the RXR-RARb. Our ®nding that growth inhibition by
Acknowledgements
Support by the USPHS NCI Program Project Grant
CA51993 (to M.I.D. and X.Z.) is gratefully acknowl-
edged. Ms. Genet Zemede assisted in preparing this
manuscript.
References
1. Mangelsdorf, D. J.; Umesono, K.; Evans, R. M. In The
Retinoids. Biology, Chemistry, and Medicine; Sporn, M. B.;
Roberts, A. B.; Goodman, D. S., Eds.; Raven: New York,
1994; pp 319±350.
2. Bissonnette, R. P.; Brunner, T.; Lazarchik, S. B.; Yoo, N.
J.; Boehm, M. F.; Green, D. R.; Heyman, R. A. Mol. Cell.
Biol. 1995, 15, 5576.
3. Lotan, R.; Dawson, M. I.; Zou, C.-C.; Jong, L.; Lotan, D.;
Zou, C.-P. Cancer Res. 1995, 55, 232.
4. Roy, B.; Taneja, R.; Chambon, P. Mol. Cell. Biol. 1995, 15,
6481.
5. Yang, Y.; Minucci, S.; Ozato, K.; Heyman, R. A.; Ashwell,
J. D. J. Biol. Chem. 1995, 270, 18672.
6. Kizaki, M.; Dawson, M. I.; Heyman, R.; Elster, E.; Mor-
osetti, R.; Pakkala, S.; Chen, D.-L.; Ueno, H.; Chao, W.;
Morikawa, M.; Ikeda, Y.; Heber, D.; Pfahl, M.; Koeer, H.
P. Blood 1996, 87, 1977.
Figure 2. Inhibition of MDA-MB-231 breast cancer cell growth by 0.1
mM trans-retinoic acid (trans-RA), 1 mM 8, 0.1 mM trans-RA plus 1
mM 8, and 1 mM 9 after 10 days, with medium containing 10% fetal
bovine serum and retinoid solution or Me2SO vehicle alone changed
every 48 h. The number of viable cells was determined by the MTT
assay.25 Results represent the average of triplicate experiments Æ the
standard error. Only growth inhibition by trans-RA plus 8 and by 9
was statistically signi®cant (P<0.001).
7. La Vista-Picard, N.; Hobbs, P. D.; Pfahl, M.; Dawson, M.
I.; Pfahl, M. Mol. Cell. Biol. 1996, 16, 4137.
8. Nagy, L.; Saydak, M.; Shipley, N.; Lu, S.; Basilion, J. P.;
Yan, Z. H.; Syka, P.; Chandraratna, R. A.; Sein, J. P.; Hey-
man, R. A.; Davies, P. J. J. Biol. Chem. 1996, 271, 4355.
9. Schulman, I. G.; Shao, G.; Heyman, R. A. Mol. Cell. Biol.
1998, 18, 3483.
10. Dawson, M. I.; Jong, L.; Hobbs, P. D.; Cameron, J. F.;
Chao, W.-R.; Pfahl, M.; Lee, M.-O.; Shroot, B.; Pfahl, M. J.
Med. Chem. 1995, 38, 3368.
11. Graupner, G.; Malle, G.; Maignan, J.; Lang, G.; Pru-
nieras, M.; Pfahl, M. Biochem. Biophys. Res. Commun. 1991,
179, 1554.
12. Strickland, S.; Breitman, T. R.; Frickel, F.; Nurrenbach,
A.; Hadicke, E.; Sporn, M. B. Cancer Res. 1983, 43, 5268.
13. Heyman, R. A.; Mangelsdorf, D. J.; Dyck, J. A.; Stein, R.
B.; Eichele, G.; Evans, R. M.; Thaller, C. Cell 1992, 68, 397.
14. Levin, A. A.; Sturzenbecker, L. J.; Kazmer, S.; Bosa-
kowski, T.; Huselton, C.; Allenby, G.; Speck, J.; Kratzeisen,
Scheme 1. Syntheses of retinoids 9 and 10 from diaryl ketones 1 and 13
(ref 10): (a) [cyclopropyltriphenylphosphonium bromide, KN(SiMe3)2,
toluene]; (MeOCH2CH2OCH2CH2)3N, re¯ux (66% for 9, 69% for 10);
(b) KOH, aq EtOH; aq citric acid (90% for 9, 83% for 10, 80% for 8).
Synthesis of 8 from 14: (c) [i-Pr(C6H5)3PI, KNSi(Me3)2, THF]; (d) Br2,
CH2Cl2; (e) DBU, THF; (66% overall); (f) 5,6,7,8-tetrahydro-3,5,5,8,8-
pentamethyl-2-naphthaleneboronic acid, [(C6H5)3P]4Pd, Na2CO3, aq
DME (41%).