Organic Letters
Letter
N. Org. Lett. 2007, 9, 3465−3468. (e) Pigeon, X.; Bergeron, M.;
opropene (1) was accomplished by a palladium catalyst and
(ii) its practical use provided a facile synthetic platform for
ring-fluorinated benzoheterole derivatives. In light of our
previously reported synthesis of difluoromethylated dihydro-
benzoheteroles via the base-mediated 3,3-difluoroallylation
with 1,5 the current method serves as a complementary
approach to fluorine-containing benzoheterole derivatives,
which are promising for pharmaceutical and agrochemical
uses.12
́ ́
Barabe, F.; Dube, P.; Frost, H. N.; Paquin, J.-F. Angew. Chem., Int.
Ed. 2010, 49, 1123−1127. (f) Ref 2b.
(5) Fujita, T.; Sanada, S.; Chiba, Y.; Sugiyama, K.; Ichikawa, J. Org.
Lett. 2014, 16, 1398−1401.
(6) Most recently, Zhang et al. reported the palladium-catalyzed
regioselective 1,1-difluoroallylation of aromatic carbons by using
arylboronic acids. See: (a) Min, Q.-Q.; Yin, Z.; Feng, Z.; Guo, W.-H.;
Zhang, X. J. Am. Chem. Soc. 2014, 136, 1230−1233. (b) Zhang, B.;
(7) For recent reports on heterocycle construction via the 5-exo
Heck cyclization, see: (a) Lubkoll, J.; Millemaggi, A.; Perry, A.;
Taylor, R. J. K. Tetrahedron 2010, 66, 6606−6612. (b) Newman, S.
G.; Lautens, M. J. Am. Chem. Soc. 2010, 132, 11416−11417.
(c) Zhong, Y.; Wang, L.; Ding, M.-W. Tetrahedron 2011, 67, 3714−
3723. (d) Lei, M.; Tian, W.; Li, W.; Lu, P.; Wang, Y. Tetrahedron
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
2014, 70, 3665−3674. (e) Kroger, D.; Schluter, T.; Fischer, M.;
̈
̈
Geibel, I.; Martens, J. ACS Comb. Sci. 2015, 17, 202−207.
(8) For synthesis of 2,2-difluorinated dihydrobenzoheteroles, see:
(a) Bailey, J.; Plevey, R. G.; Tatlow, J. C. Tetrahedron Lett. 1975, 16,
869−870. (b) Maksimov, A. M.; Platonov, V. E. Heteroat. Chem.
1992, 3, 373−384.
Experimental details, characterization data, and NMR
AUTHOR INFORMATION
Corresponding Author
■
(9) Use of 2-bromobenzenethiol instead of 2-bromophenols
afforded the corresponding S-3,3-difluoroallylated product exclusively,
even in the presence of the Pd catalyst.
Notes
(10) For synthesis of 2-fluorobenzofurans and 2-fluoroindoles, see:
(a) Nash, S. A.; Gammill, R. B. Tetrahedron Lett. 1987, 28, 4003−
4006. (b) Hodson, H. F.; Madge, D. J.; Widdowson, D. A. Synlett
1992, 1992, 831−832. (c) Hodson, H. F.; Madge, D. J.; Slawin, A.
N. Z.; Widdowson, D. A.; Williams, D. J. Tetrahedron 1994, 50,
1899−1906. (d) Ichikawa, J.; Wada, Y.; Okauchi, T.; Minami, T.
Chem. Commun. 1997, 1537−1538. (e) Martín-Santamaría, S.;
Carroll, M. A.; Carroll, C. M.; Carter, C. D.; Pike, V. W.; Rzepa,
H. S.; Widdowson, D. A. Chem. Commun. 2000, 649−650.
(f) Ichikawa, J.; Wada, Y.; Fujiwara, M.; Sakoda, K. Synthesis 2002,
2002, 1917−1936. (g) Ichikawa, J.; Nadano, R.; Mori, T.; Wada, Y.
Org. Synth. 2011, 83, 111−120. (h) Truong, T.; Klimovica, K.;
Daugulis, O. J. Am. Chem. Soc. 2013, 135, 9342−9345. (i) Shao, Q.;
Huang, Y. Chem. Commun. 2015, 51, 6584−6586.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in-Aid for Scientific
Research (B) (No. 25288016) and a Grant-in-Aid for Young
Scientists (B) (No. 26870079) from JSPS. We acknowledge
Tosoh F-Tech, Inc., for the generous gift of 3-bromo-3,3-
difluoropropene.
REFERENCES
■
(1) For selected recent reviews on allylic substitution, see:
(a) Dieg
́
uez, M.; Pam
̀
ies, O. Acc. Chem. Res. 2010, 43, 312−322.
(11) Ichitsuka, T.; Fujita, T.; Ichikawa, J. ACS Catal. 2015, 5,
5947−5950.
(12) For the bioactivity of ring-(di)fluorinated heterocyclic
compounds, see: Meanwell, N. A. J. Med. Chem. 2011, 54, 2529−
2591 and references cited therein.
(b) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461−
1475. (c) Bandini, M.; Cera, G.; Chiarucci, M. Synthesis 2012, 2012,
504−512. (d) Sundararaju, B.; Achard, M.; Bruneau, C. Chem. Soc.
Rev. 2012, 41, 4467−4483. (e) Yoshikai, N.; Nakamura, E. Chem.
Rev. 2012, 112, 2339−2372. (f) Liu, W.; Zhao, X. Synthesis 2013, 45,
2051−2069. (g) Oliver, S.; Evans, P. A. Synthesis 2013, 45, 3179−
́
3198. (h) Baeza, A.; Najera, C. Synthesis 2013, 46, 25−34. (i) Arnold,
J. S.; Zhang, Q.; Nguyen, H. M. Eur. J. Org. Chem. 2014, 2014,
4925−4948.
(2) For SN2′ and SN2 reactions of difluoroallylic electrophiles, see:
(a) Capuzzi, L.; Bettarini, F.; Meazza, G.; Massardo, P. Gazz. Chim.
Ital. 1991, 121, 53−54. (b) Shi, G.-q.; Cai, W.-l. Synlett 1996, 1996,
371−372. (c) Tellier, F.; Baudry, M.; Sauvet
̂
re, R. Tetrahedron Lett.
1997, 38, 5989−5992.
(3) Defluorinative allylic substitutions via nucleophilic reactions
proceed in an SN2′ manner. See: (a) Ichikawa, J. Chim. Oggi 2007,
25 (4), 54−57 and references cited therein. (b) Ichikawa, J. J. Synth.
Org. Chem., Jpn. 2010, 68, 1175−1184 and references cited therein.
(c) Yanai, H.; Okada, H.; Sato, A.; Okada, M.; Taguchi, T.
Tetrahedron Lett. 2011, 52, 2997−3000. (d) Bergeron, M.; Johnson,
T.; Paquin, J.-F. Angew. Chem., Int. Ed. 2011, 50, 11112−11116.
(e) Bergeron, M.; Guyader, D.; Paquin, J.-F. Org. Lett. 2012, 14,
5888−5891.
(4) For the Tsuji−Trost reactions of fluoroallylic electrophiles, see:
(a) Shi, G.-q.; Huang, X.-h.; Zhang, F.-J. Tetrahedron Lett. 1995, 36,
6305−6308. (b) Kirihara, M.; Takuwa, T.; Okumura, M.; Wakikawa,
T.; Takahata, H.; Momose, T.; Takeuchi, Y.; Nemoto, H. Chem.
Pharm. Bull. 2000, 48, 885−888. (c) Kawatsura, M.; Wada, S.;
Hayase, S.; Itoh, T. Synlett 2006, 2006, 2483−2485. (d) Narumi, T.;
Tomita, K.; Inokuchi, E.; Kobayashi, K.; Oishi, S.; Ohno, H.; Fujii,
D
Org. Lett. XXXX, XXX, XXX−XXX