ACS Catalysis
Research Article
Asymmetric Allylic Alkylation on the Basis of the Biotin-Avidin
Technology. Angew. Chem. 2008, 120, 713−717.
Artificial Metalloenzyme Regulates a Gene Switch in a Designer
Mammalian Cell. Nat. Commun. 2018, 9, 1943.
(70) Bunzel, H. A.; Garrabou, X.; Pott, M.; Hilvert, D. Speeding Up
Enzyme Discovery and Engineering with Ultrahigh-Throughput
Methods. Curr. Opin. Struct. Biol. 2018, 48, 149−156.
(71) Podtetenieff, J.; Taglieber, A.; Bill, E.; Reijerse, E. J.; Reetz, M.
T. An Artificial Metalloenzyme: Creation of a Designed Copper
Binding Site in a Thermostable Protein. Angew. Chem. 2010, 49,
5151−5155.
(72) Jarvo, E. R.; Miller, S. J. Amino Acids and Peptides as
Asymmetric Organocatalysts. Tetrahedron 2002, 58, 2481−2495.
(73) Miller, S. J. In Search of Peptide-Based Catalysts for
Asymmetric Organic Synthesis. Acc. Chem. Res. 2004, 37, 601−610.
(74) Davie, E. A. C.; Mennen, S. M.; Xu, Y.; Miller, S. J. Asymmetric
Catalysis Mediated by Synthetic Peptides. Chem. Rev. 2007, 107,
5759−5812.
(75) Maeda, Y.; Makhlynets, O. V.; Matsui, H.; Korendovych, I. V.
Design of Catalytic Peptides and Proteins Through Rational and
Combinatorial Approaches. Annu. Rev. Biomed. Eng. 2016, 18, 311−
328.
(76) Studer, S.; Hansen, D. A.; Pianowski, Z. L.; Mittl, P. R. E.;
Debon, A.; Guffy, S. L.; Der, B. S.; Kuhlman, B.; Hilvert, D. Evolution
of a Highly Active and Enantiospecific Metalloenzyme from Short
Peptides. Science 2018, 362, 1285.
(77) Quintanar, L.; Rivillas-Acevedo, L. Studying Metal Ion−Protein
Interactions: Electronic Absorption, Circular Dichroism, and Electron
Paramagnetic Resonance. In Protein-Ligand Interactions: Methods and
Applications; Williams, M. A., Daviter, T., Eds.; Humana Press:
Totowa, NJ, 2013, pp 267−297.
(78) Bou-Abdallah, F.; Giffune, T. R. The Thermodynamics of
Protein Interactions with Essential First Row Transition Metals.
Biochim. Biophys. Acta 2016, 1860, 879−891.
(79) Wade, H.; Stayrook, S. E.; DeGrado, W. F. The Structure of a
Designed Diiron(III) Protein: Implications for Cofactor Stabilization
and Catalysis. Angew. Chem., Int. Ed. Engl. 2006, 45, 4951−4954.
(80) Ruckthong, L.; Zastrow, M. L.; Stuckey, J. A.; Pecoraro, V. L. A
Crystallographic Examination of Predisposition versus Preorganiza-
tion in de Novo Designed Metalloproteins. J. Am. Chem. Soc. 2016,
138, 11979−11988.
(81) Koebke, K. J.; Ruckthong, L.; Meagher, J. L.; Mathieu, E.;
Harland, J.; Deb, A.; Lehnert, N.; Policar, C.; Tard, C.; Penner-Hahn,
J. E.; Stuckey, J. A.; Pecoraro, V. L. Clarifying the Copper
Coordination Environment in a de Novo Designed Red Copper
Protein. Inorg. Chem. 2018, 57, 12291−12302.
(82) Churchfield, L. A.; Alberstein, R. G.; Williamson, L. M.;
Tezcan, F. A. Determining the Structural and Energetic Basis of
Allostery in a De Novo Designed Metalloprotein Assembly. J. Am.
Chem. Soc. 2018, 140, 10043−10053.
(83) Yu, Y.; Cui, C.; Liu, X.; Petrik, I. D.; Wang, J.; Lu, Y. A
Designed Metalloenzyme Achieving the Catalytic Rate of a Native
Enzyme. J. Am. Chem. Soc. 2015, 137, 11570−11573.
(84) Dydio, P.; Key, H. M.; Nazarenko, A.; Rha, J. Y. E.;
Seyedkazemi, V.; Clark, D. S.; Hartwig, J. F. An Artificial
Metalloenzyme with the Kinetics of Native Enzymes. Science 2016,
354, 102.
(85) Klemba, M.; Gardner, K. H.; Marino, S.; Clarke, N. D.; Regan,
L. Novel Metal-Binding Proteins by Design. Nat. Struct. Biol. 1995, 2,
368−373.
(86) Marino, S. F.; Regan, L. Secondary Ligands Enhance Affinity at
a Designed Metal-Binding Site. Chem. Biol. 1999, 6, 649−655.
(87) Petrik, I. D.; Liu, J.; Lu, Y. Metalloenzyme Design and
Engineering Through Strategic Modifications of Native Protein
Scaffolds. Curr. Opin. Chem. Biol. 2014, 19, 67−75.
(50) Ward, T. R. Artificial Metalloenzymes Based on the Biotin−
Avidin Technology: Enantioselective Catalysis and Beyond. Acc.
Chem. Res. 2011, 44, 47−57.
(51) Mayer, C.; Gillingham, D. G.; Ward, T. R.; Hilvert, D. An
Artificial Metalloenzyme for Olefin Metathesis. Chem. Commun. 2011,
47, 12068−12070.
(52) Lo, C.; Ringenberg, M. R.; Gnandt, D.; Wilson, Y.; Ward, T. R.
Artificial Metalloenzymes for Olefin Metathesis Based on the Biotin-
(Strept)avidin Technology. Chem. Commun. 2011, 47, 12065−12067.
(53) Mirts, E. N.; Petrik, I. D.; Hosseinzadeh, P.; Nilges, M. J.; Lu, Y.
A Designed Heme-[4Fe-4S] Metalloenzyme Catalyzes Sulfite
Reduction like the Native Enzyme. Science 2018, 361, 1098−1101.
(54) Klein, G.; Humbert, N.; Gradinaru, J.; Ivanova, A.; Gilardoni,
F.; Rusbandi, U. E.; Ward, T. R. Tailoring the Active Site of
Chemzymes by Using a Chemogenetic-Optimization Procedure:
Towards Substrate-Specific Artificial Hydrogenases Based on the
Biotin-Avidin Technology. Angew. Chem. 2005, 117, 7942−7945.
(55) Creus, M.; Pordea, A.; Rossel, T.; Sardo, A.; Letondor, C.;
Ivanova, A.; Letrong, I.; Stenkamp, R. E.; Ward, T. R. X-Ray Structure
and Designed Evolution of an Artificial Transfer Hydrogenase. Angew.
Chem. 2008, 47, 1400−1404.
(56) Hyster, T. K.; Knorr, L.; Ward, T. R.; Rovis, T. Biotinylated
Rh(III) Complexes in Engineered Streptavidin for Accelerated
Asymmetric C-H Activation. Science 2012, 338, 500−503.
(57) Lewis, J. C. Beyond the Second Coordination Sphere:
Engineering Dirhodium Artificial Metalloenzymes To Enable Protein
Control of Transition Metal Catalysis. Acc. Chem. Res. 2019, 52, 576−
584.
(58) Brodin, J. D.; Medina-Morales, A.; Ni, T.; Salgado, E. N.;
Ambroggio, X. I.; Tezcan, F. A. Evolution of Metal Selectivity in
Templated Protein Interfaces. J. Am. Chem. Soc. 2010, 132, 8610−
8617.
(59) Yu, F.; Cangelosi, V. M.; Zastrow, M. L.; Tegoni, M.; Plegaria,
J. S.; Tebo, A. G.; Mocny, C. S.; Ruckthong, L.; Qayyum, H.;
Pecoraro, V. L. Protein Design: Toward Functional Metalloenzymes.
Chem. Rev. 2014, 114, 3495−3578.
(60) Rittle, J.; Field, M. J.; Green, M. T.; Tezcan, F. A. An Efficient,
Step-Economical Strategy for the Design of Functional Metal-
loproteins. Nat. Chem. 2019, 11, 434−441.
(61) Nanda, V.; Koder, R. L. Designing Artificial Enzymes by
Intuition and Computation. Nat. Chem. 2010, 2, 15−24.
̈
̈
(62) Hohne, M.; Schatzle, S.; Jochens, H.; Robins, K.; Bornscheuer,
U. T. Rational Assignment of Key Motifs for Function Guides in silico
Enzyme Identification. Nat. Chem. Biol. 2010, 6, 807−813.
(63) Gonzalez, G.; Hannigan, B.; DeGrado, W. F. A Real-Time All-
Atom Structural Search Engine for Proteins. PLoS Comput. Biol. 2014,
10, No. e1003750.
(64) Hu, X.; Dong, Q.; Yang, J.; Zhang, Y. Recognizing metal and
acid radical ion-binding sites by integratingab initiomodeling with
template-based transferals. Bioinformatics 2016, 32, 3260−3269.
(65) Akcapinar, G. B.; Sezerman, O. U. Computational Approaches
for de novo Design and Redesign of Metal-Binding Sites on Proteins.
Biosci. Rep. 2017, 37, BSR20160179.
(66) Obexer, R.; Pott, M.; Zeymer, C.; Griffiths, A. D.; Hilvert, D.
Efficient Laboratory Evolution of Computationally Designed Enzymes
with Low Starting Activities Using Fluorescence-Activated Droplet
Sorting. Protein Eng., Des. Sel. 2016, 29, 355−366.
(67) Bozkurt, E.; Perez, M. A. S.; Hovius, R.; Browning, N. J.;
Rothlisberger, U. Genetic Algorithm Based Design and Experimental
Characterization of a Highly Thermostable Metalloprotein. J. Am.
Chem. Soc. 2018, 140, 4517−4521.
(68) Ghattas, W.; Dubosclard, V.; Wick, A.; Bendelac, A.; Guillot,
R.; Ricoux, R.; Mahy, J.-P. Receptor-Based Artificial Metalloenzymes
on Living Human Cells. J. Am. Chem. Soc. 2018, 140, 8756−8762.
(69) Okamoto, Y.; Kojima, R.; Schwizer, F.; Bartolami, E.; Heinisch,
T.; Matile, S.; Fussenegger, M.; Ward, T. R. A Cell-Penetrating
(88) Cunningham, T. F.; Putterman, M. R.; Desai, A.; Horne, W. S.;
Saxena, S. The Double-Histidine Cu2+-Binding Motif: A Highly Rigid,
Site-Specific Spin Probe for Electron Spin Resonance Distance
Measurements. Angew. Chem. 2015, 54, 6330−6334.
(89) Taraska, J. W.; Puljung, M. C.; Olivier, N. B.; Flynn, G. E.;
Zagotta, W. N. Mapping the Structure and Conformational
11379
ACS Catal. 2019, 9, 11371−11380