5516
W. D. Seo et al. / Bioorg. Med. Chem. Lett. 15 (2005) 5514–5516
Grzegorzewski, K.; Newton, S. A.; Akiyama, S. K.;
Sharrow, S.; Olden, K.; White, S. L. Cancer Commun.
1989, 1, 373; (c) Humphries, M. J.; Matsumoto, K.; White,
S. L.; Olden, K. Cancer Res. 1986, 46, 5215.
values were affected by increasing concentrations of 20,
while the Km were not. All compounds were screened for
two amylase inhibitory activities at 200 lM
concentration.
8. (a) Kato, A.; Kato, N.; Kano, E.; Adachi, I.; Ikeda, K.;
Yu, L.; Okamoto, T.; Banba, Y.; Ouchi, H.; Takahata, H.;
Asano, N. J. Med. Chem. 2005, 48, 2036; (b) Moreno-
Vargas, A. J.; Demange, R.; Fuentes, J.; Robina, I.; Vogel,
P. Bioorg. Med. Chem. Lett. 2002, 12, 2335; (c) Height-
man, T. D.; Vasella, A. T. Angew. Chem. Int. Ed. 1999, 38,
750.
Compounds 1–12 did not have inhibitory activity
against a-amylase and b-amylase; however, sulfonamide
chalcones 17–20 were strong inhibitors against a-amy-
lase and b-amylase, and aminated chalcones (13, 16)
had mild inhibitory activity against b-amylase (Table 2).
9. Schaller, C.; Demange, R.; Picasso, S.; Vogel, P. Bioorg.
Med. Chem. Lett. 1999, 9, 277.
10. Chen, X.; Fan, Y.; Zheng, Y.; Shen, Y. Chem. Rev. 2003,
103, 1955.
11. Star, A. E.; Mabry, T. J. Phytochemistry 1971, 10, 2812;
(b) Stevens, J. F.; Taylor, A. W.; Nickerson, G. B.;
Ivancic, M.; Henning, J.; Haunold, A.; Deinzer, M. L.
Phytochemistry 2000, 53, 759.
In conclusion, the results show that sulfonamide chal-
cones represent a new class of strong glycosidase
inhibitors.
Acknowledgments
12. (a) Nielsen, S. F.; Christensen, S. B.; Cruciani, G.;
Kharazmi, A.; Liljefors, T. J. Med. Chem. 1998, 41,
4819; (b) Li, R.; Kenyon, G. L.; Cohen, F. E.; Chen, X.;
Gong, B.; Dominguez, J. N.; Davidson, E.; Kurzban, G.;
Miller, R. E.; Nuzum, E. O.; Rosenthal, P. J.; Mckerrow,
J. H. J. Med. Chem. 1995, 38, 5031; (c) Liu, M.; Wilairat,
P.; Go, M. L. J. Med. Chem. 2001, 44, 4443.
13. (a) Hsieh, H. K.; Lee, T. H.; Wang, J. P.; Wang, J. J.; Lin,
C. N. Pharm. Res. 1998, 15, 39; (b) Babu, M. A.; Shakya,
N.; Prathipati, P.; Kaskhedikar, S. G.; Saxena, A. K.
Bioorg. Med. Chem. 2003, 10, 4035.
14. Barfod, L.; Kemp, K.; Hansen, M.; Kharazmi, A. Int.
Immunopharmacol. 2002, 2, 545.
15. Rojas, J.; Paya, M.; Dominguez, J. N.; Ferranidz, M. L.
Bioorg. Med. Chem. Lett. 2002, 12, 1951.
16. (a) Kumar, S. K.; Hager, E.; Pettit, C.; Gurulingappa, H.;
Davidson, N. E.; Khan, S. R. J. Med. Chem. 2003, 46,
2813; (b) Ducki, S.; Forrest, R.; Hadfield, J. A.; Kendall,
A.; Lawrence, N. J.; McGown, A. T.; Rennison, D.
Bioorg. Med. Chem. Lett. 1998, 8, 1051.
This work was supported by the Korea Science and
Engineering Foundation (KOSEF) through the Region-
al Animal Industry Research Center at Jinju National
University, Jinju, Korea. We thank Brain Korea 21 pro-
gram. We acknowledge the great assistance, both finan-
cial and educational, of Prof. S.G. Davies, Chemistry
Research Laboratory, University of Oxford, OX13.
Supplementary data
Supplementary data associated with this article can be
References and notes
17. Artico, M.; Santo, R. D.; Costi, R.; Novellino, E.; Greco,
G.; Massa, S.; Tramontano, E.; Marongiu, M. E.; Montis,
A. D.; Colla, P. L. J. Med. Chem. 1998, 41, 3984.
18. (a) Dhar, D. N.; Lal, J. B. J. Org. Chem. 1958, 23, 1159;
(b) Wattanasin, S.; Murphy, W. S. Synthesis 1980, 8, 647.
19. (a) Davey, W.; Tivey, D. J. J. Chem. Soc. 1958, 1230; (b)
Lyle, R. E.; Paradis, L. P. J. Am. Chem. Soc. 1955, 77,
6667.
1. (a) Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291,
2357; (b) Morenem, K. W.; Trimble, R. B.; Herscovics, A.
Glycobiology 1994, 4, 113.
2. (a) Albein, A. D. Annu. Rev. Biochem. 1987, 56, 497; (b)
Dwek, R. A. Chem. Rev. 1996, 96, 683; (c) Branza-Nichita,
N.; Petrescu, A. J.; Negroin, G.; Dwek, R. A.; Petrescu, S.
M. Chem. Rev. 2000, 100, 4697.
3. (a) Hughs, A. B.; Rudge, A. J. Nat. Prod. Rep. 1994, 35;
(b) Jacobs, G. S. Curr. Opin. Struct. Biol. 1995, 5, 605.
4. (a) Chiba, S. Handbook of Amylases and Related
Enzymes, Amylase Research Society of Japan, Ed.;
Pergamon: Oxford, 1988; pp 104–116; (b) Frandesn, T.
P.; Svensson, B. Plant Mol. Biol. 1998, 37, 1.
5. (a) Braun, C.; Brayer, G. D.; Withers, S. G. J. Biol. Chem.
1995, 270, 26778; (b) Dwek, R. A.; Butters, T. D.; Platt, F.
M.; Zitzmann, N. Nat. Rev. Drug. Discov. 2002, 1, 65; (c)
Robinson, K. M.; Begovic, M. E.; Rhinerhardt, M. E.;
Heineke, E. W.; Ducep, J. B.; Kastner, P. R.; Marshall, R.
N.; Danzin, C. Diabetes 1991, 40, 825.
20. Scognamiglio, R.; Avogaro, A.; Kreutzenberg, S. V.;
Negut, C.; Palisi, M.; Bagolin, E.; Tiengo, A. Diabetes
2002, 51, 808.
21. (a) Selected spectroscopic data 17: mp 183–184 °C; 1H
NMR (300 MHz, d) 2.35 (3H, s), 6.86 (2H, dd, J = 6.8,
1.9 Hz), 7.29 (2H, d, J = 8.3 Hz), 7.37 (3H, m), 7.58
(2H, m), and 7.69 (5H, m); (b) 18: mp 189–190 °C; 1H
NMR (300 MHz, d) 2.35 (3H, s), 6.85 (1H, d,
J = 8.2 Hz), 7.07 (1H, dd, J = 8.3, 2.0 Hz), 7.18 (1H, d,
J = 2.0 Hz), 7.27–7.39 (5H, m), 7.62 (1H, d,
J = 15.6 Hz), and 7.68 (4H, m); (c) 19: mp 105–107 °C;
1H NMR (300 MHz, d) 2.25 (3H, s), 6.82 (2H, d,
J = 8.6 Hz), 7.23 (4H, m), 7.42 (1H, d, J = 15.5 Hz), 7.51
(2H, d, J = 8.6 Hz), 7.66 (1H, d, J = 15.5 Hz), 7.73 (2H,
d, J = 8.3 Hz), and 7.90 (2H, dd, J = 8.7, 2.0 Hz); (d) 20:
mp 179–180 °C; 1H NMR (300 MHz, d) 2.29 (3H, s),
6.78 (1H, d, J = 8.2 Hz), 6.94 (1H, dd, J = 8.2, 2.0 Hz),
7.10 (1H, d, J = 2.0 Hz), 7.19 (5H, m), 7.50 (1H, d,
J = 15.2 Hz), 7.66 (2H, d, J = 8.2 Hz), and 7.76 (2H, d,
J = 8.6 Hz).
6. (a) Mehta, A.; Zitzmann, N.; Rudd, P. M.; Block, T. M.;
Dwek, R. A. FEBS Lett. 1998, 430, 17; (b) De Praeter, C.
M.; Gerwig, G. J.; Bause, E.; Nuytinck, L. K.; Vliegent-
hart, J. F. G.; Breuer, W.; Kamerling, J. P.; Espeel, M. F.;
Martin, J. J. R.; De Paepe, A. M.; Chan, N. W. C.;
Dacremont, G. A.; Van Costerm, R. N. Am. J. Hum.
Genet. 2000, 66, 1744.
7. (a) Fernandes, B.; Sagman, U.; Auger, M.; Demetrio, M.;
Dennism, J. W. Cancer Res. 1991, 51, 718; (b)