Journal of the American Chemical Society
Communication
(9) (a) Nakajima, K.; Takai, F.; Tanaka, T.; Okawa, K. Bull. Chem. Soc.
Jpn. 1978, 51, 1577. (b) White, C. J.; Yudin, A. K. Org. Lett. 2012, 14,
In closing, we have capitalized on the susceptibility of N-acyl
aziridines to amide hydrolysis, which is often considered to be
their “Achilles’ heel”, to develop a tool for site-specific
incorporation of molecular fragments into homodetic cyclic
peptides. The reduced amidicity of the N-acyl aziridine linkage
facilitated site-selective hydrolysis and was important in two
additional embodiments: it enabled us to avoid the well-known
problem of diketopiperazine formation,16 and it made the
problem of oligomerization a correctible mistake. By stressing
the reversibility of N-acyl aziridine formation under mild
conditions, our study paves a way to thermodynamically
controlled applications of active amides in dynamic combinato-
rial chemistry.26 In the course of our study, we also discovered
the peculiar stereoelectronic consequences of placing N-acyl
aziridine units into homodetic cyclic peptides of different sizes.
The products of this integrative chemistry are useful building
blocks that can be employed for the late-stage installation of
unnatural side chains. This technique should be readily adaptable
to solid-phase synthesis, be extended to split and pool protocols
using molecular fragments of varying diversity, and inspire non-
amide-bond-forming approaches to fragment integration.
2898. (c) Rademacher, P.; Wurthwein, E.-U. J. Mol. Struct. 1986, 139,
̈
315. (d) Falkenstein, R.; Mall, T.; Speth, D.; Stamm, H. J. Org. Chem.
1993, 58, 7377.
(10) (a) Galonic,
Soc. 2004, 126, 12712. (b) Galonic,
A.; Gin, D. Y. J. Am. Chem. Soc. 2005, 127, 7359.
(11) Lygo, B. Tetrahedron 1995, 51, 12859.
́
D. P.; van der Donk, W. A.; Gin, D. Y. J. Am. Chem.
́
D. P.; Ide, N. D.; van der Donk, W.
(12) Lewinski, M. K.; Bushman, F. D. Adv. Genet. 2005, 55, 147.
(13) (a) Blackburn, G. M.; Skaife, C. J.; Kay, I. T. J. Chem. Res.,
Miniprint 1980, 3650. (b) Somayaji, V.; Brown, R. S. J. Org. Chem. 1986,
51, 2676.
́
(14) (a) Slebacka-Tilk, H.; Brown, R. S. J. Org. Chem. 1987, 52, 805.
́
(b) Bennet, A. J.; Wang, Q. P.; Slebacka-Tilk, H.; Somayaji, V.; Brown,
R. S.; Santarsiero, B. D. J. Am. Chem. Soc. 1990, 112, 6383.
(15) Korn, A.; Rudolph-Bohner, S.; Moroder, L. Tetrahedron 1994, 50,
̈
1717.
(16) In peptide chemistry, the attack of the N-terminal amine at the (i +
1) peptide bond is a commonly observed problem that leads to the
formation of unwanted diketopiperazines. We do not observe this
undesired side process in our system.
(17) For a recent example showcasing amide couplings with
carboxylate salts, see: Goodreid, J. D.; Duspara, P. A.; Bosch, C.;
Batey, R. A. J. Org. Chem. 2014, 79, 943.
(18) The yields of the desired products 4 and thus 4′ increased upon
the addition of water to the oligomeric mixture. We performed a control
experiment with H-Sar-OtBu to quantify this effect. See the Supporting
Information for details.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details, optimization data, characterization data,
HPLC traces, and 1H and 13C NMR spectra of all new
compounds. This material is available free of charge via the
(19) Malesevic, M.; Strijowski, U.; Bachle, D.; Sewald, N. J. Biotechnol.
̈
2004, 112, 73.
(20) (a) Carpino, L. A. J. Am. Chem. Soc. 1993, 115, 4397. (b) Ehrlich,
A.; Heyne, H.-U.; Winter, R.; Beyermann, M.; Haber, H.; Carpino, L. A.;
Bienert, M. J. Org. Chem. 1996, 61, 8831. (c) Cardillo, G.; Gentilucci, L.;
Tolomelli, A.; Tomasini, C. Tetrahedron Lett. 1997, 38, 6953.
(21) (a) Legters, J.; Willems, J. G. H.; Thijs, L.; Zwanenburg, B. Recl.
Trav. Chim. Pays-Bas 1992, 111, 59. (b) Bucciarelli, M.; Forni, A.;
Moretti, I.; Prati, F.; Torre, G. Tetrahedron: Asymmetry 1995, 6, 2073.
(22) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int.
Ed. 2001, 40, 2004. (b) Tornøe, C. W.; Christensen, C.; Meldal, M. J. J.
Org. Chem. 2002, 67, 3057.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank NSERC and CIHR for financial support.
■
(23) Rosenker, C. J.; Krenske, E. H.; Houk, K. N.; Wipf, P. Org. Lett.
2013, 15, 1076.
(24) Previous examples incorporating nonpeptidic fragments within
larger peptide macrocycles include: (a) Smith, J. M.; Vitali, F.; Archer, S.
A.; Fasan, R. Angew. Chem., Int. Ed. 2011, 50, 5075. (b) Chen, S.;
Morales-Sanfrutos, J.; Angelini, A.; Cutting, B.; Heinis, C. Chem-
BioChem 2012, 13, 1032. (c) Wu, X.; Wang, L.; Han, Y.; Regan, N.; Li,
P.-K.; Villalona, M. A.; Hu, X.; Briesewitz, R.; Pei, D. ACS Comb. Sci.
2011, 13, 486.
(25) We have also shown that thiol nucleophiles are amenable to our
methodology. PhSH was shown to react with 5o to yield two
regioisomeric products. See the Supporting Information for details.
REFERENCES
■
(1) (a) Driggers, E. M.; Hale, S. P.; Lee, J.; Terrett, N. K. Nat. Rev. Drug
Discovery 2008, 7, 608. (b) Marsault, E.; Peterson, M. L. J. Med. Chem.
2011, 54, 1961.
(2) Glenn, M. P.; Kelso, M. J.; Tyndall, J. D. A.; Fairlie, D. P. J. Am.
Chem. Soc. 2003, 125, 640.
(3) (a) Rezai, T.; Yu, B.; Millhauser, G. L.; Jacobson, M. P.; Lokey, R. S.
J. Am. Chem. Soc. 2006, 128, 2510. (b) Fernan
2004, 22, 1081.
́
dez, A. Nat. Biotechnol.
(4) Tyndall, J. D. A.; Nall, T.; Fairlie, D. P. Chem. Rev. 2005, 105, 973.
(5) (a) Robinson, J. A. ChemBioChem 2009, 10, 971. (b) Burgess, K.
Acc. Chem. Res. 2001, 34, 826. (c) Whitby, L. R.; Boger, D. L. Acc. Chem.
Res. 2012, 45, 1698. (d) Bullock, B. N.; Jochim, A. L.; Arora, P. S. J. Am.
Chem. Soc. 2011, 133, 14220. (e) Nowisk, J. S. Acc. Chem. Res. 2008, 41,
1319. (f) Robinson, J. A. Acc. Chem. Res. 2008, 41, 1278. (g) Angelini, A.;
Cendron, L.; Chen, S.; Touati, J.; Winter, G.; Zanotti, G.; Heinis, C. ACS
Chem. Biol. 2012, 7, 817.
(26) Ramstrom, O.; Lehn, J.-M. Nat. Rev. Drug Discovery 2002, 1, 26.
̈
(6) White, C. J.; Yudin, A. K. Nature Chem. 2011, 3, 509.
(7) (a) Seebach, D.; Beck, A. K.; Bossler, H. G.; Gerber, C.; Ko, S. Y.;
Murtiashaw, W.; Naef, R.; Shoda, S.-I.; Thaler, A.; Krieger, M.; Wenger,
R. Helv. Chim. Acta 1993, 76, 1564. (b) White, T. R.; Renzelman, C. M.;
Rand, A. C.; Rezai, T.; McEwen, C. M.; Gelev, V. M.; Turner, R. A.;
Linington, R. G.; Leung, S. S. F.; Kalgutkar, A. S.; Bauman, J. N.; Zhang,
Y.; Liras, S.; Price, D. A.; Mathiowetz, A. M.; Jacobson, M. P.; Lokey, R.
S. Nat. Chem. Biol. 2011, 7, 810.
(8) Hili, R.; Rai, V.; Yudin, A. K. J. Am. Chem. Soc. 2010, 132, 2889.
3731
dx.doi.org/10.1021/ja412256f | J. Am. Chem. Soc. 2014, 136, 3728−3731