4
Tetrahedron Letters
4. For synthesis of arylpyrazoles using Kumada coupling: (a)
H
R
Felding, J.; Kristensen, J.; Bjerregaard, T.; Sander, L.; Vedso, P.;
Begtrup, M. J. Org. Chem. 1999, 64, 4196-4198; (b) Ichikawa, H.;
Ohno, Y.; Usami, Y.; Arimoto, M. Heterocycles 2006, 68, 2247-
2252.
R
R
PdCl(C3H5)(dppb)
2 mol%
N
H
N
+
Br
N
N
R
KOAc, DMA,
150 °C, 72 h
5. For synthesis of arylpyrazoles using Stille coupling: (a) Elguero,
J.; Jaramillo, C.; Pardo, C. Synthesis 1997, 563-566; (b) Jeon, S.-
L.; Choi, J. H.; Kim, B. T.; Jeong, I. H. J. Fluorine Chem. 2007,
128, 1191-1197.
R
R
H
Me
3 equiv.
21
23
1 equiv.
6. (a) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200-205; (b)
Campeau, L.-C.; Stuart, D. R.; Fagnou, K. Aldrichim. Acta 2007,
40, 35-41; (c) Seregin, I. V.; Gevoryan, V. Chem. Soc. Rev. 2007,
36, 1173-1193; (d) Li, B.-J.; Yang, S.-D.; Shi, Z.-J. Synlett 2008,
949-957; (e) Bellina, F.; Rossi, R. Tetrahedron 2009, 65, 10269-
10310; (f) Ackermann, L.; Vincente, R.; Kapdi, A. R. Angew.
Chem. Int. Ed. 2009, 48, 9792-9826; (g) Roger, J.; Gottumukkala,
A. L.; Doucet, H. ChemCatChem 2010, 2, 20-40; (h) Fischmeister,
C.; Doucet, H. Green Chem. 2011, 13, 741-753; (i) Kuhl, N.;
Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem.
Int. Ed. 2012, 51, 10236-10254; (j) Yamaguchi, J.; Yamaguchi, A.
D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960-9009; (k)
Wencel-Delord, J.; Glorius, F. Nature Chem. 2013, 5, 369-375; (l)
Kuzhushkov, S. I.; Potukuchi, H. K.; Ackermann, L. Catal. Sci.
Technol. 2013, 3, 562-571; (m) Yuan, K.; Doucet H.
ChemCatChem 2013, 5, 3495-3496.
CF3
NC
NC
F3C
F3C
Me
Me
N
N
N
N
N
N
NC
NC
F3C
25c 78%
22c 40%
24c 43%
Scheme 4 Palladium-catalysed diarylation of 1-phenylpyrazoles
21 and 23 with aryl bromides.
In summary, taking advantage of the relatively similar
energies of activation of positions C4 and C5 of pyrazoles vs C3
7. Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.; Fukunaga, R.;
Miyafuji, A.; Nakata, T.; Tani, N.; Aoyagi, Y. Heterocycles 1990,
31, 1951-1958.
for
palladium-catalysed
couplings
via
C-H
bonds
activation/functionalisation reactions, we have shown here that a
range of (hetero)aryl bromides react similarly at both C4 and C5
positions of pyrazoles, but without arylation at C3, except by
using 3,5-bis(trifluoromethyl)bromobenzene, to give in only one
step 4,5-diarylpyrazoles. It should be noted that this protocol,
which employs a moderate loading of an air stable catalyst and an
inexpensive base, is compatible with a range of functions,
including electron-withdrawing reactive ones, such as chloro,
formyl, propionyl, ester, nitrile or nitro on the aryl bromide
allowing further transformations. The major by-products of these
couplings are KBr/AcOH instead of metallic salts with more
classical coupling procedures. For these reasons, this process
gives a simpler and greener access to these diarylpyrazoles.
8. For recent contributions on direct arylations or vinylations of
(hetero)aromatics from our laboratory: (a) Beydoun, K.; Zaarour,
M.; Williams, J. A. G.; Doucet, H.; Guerchais, V. Chem.
Commun. 2012, 48, 1260-1262; (b) Zhao, L.; Bruneau, C.;
Doucet, H. ChemCatChem 2013, 5, 255-262; (c) Yuan, K.;
Doucet, H. Chem. Sci. 2014, 5, 392-396.
9. For studies on the regioselectivity of the intermolecular direct
arylation of pyrazoles: (a) Goikhman, R.; Jacques, T. L.; Sames,
D. J. Am. Chem. Soc. 2009, 131, 3042-3048; (b) Beladhria, A.;
Beydoun, K.; Ben Ammar, H.; Ben Salem, R.; Doucet, H.
Synthesis 2011, 2553-2560.
10. For examples of Pd-catalysed direct intermolecular 5-arylations of
pyrazoles: (a) Rene, O.; Fagnou, K. Adv. Synth. Catal. 2010, 352,
2116-2120; (b) Mateos, C.; Mendiola, J.; Carpintero, M.;
Minguez, J. M. Org. Lett. 2010, 12, 4924-4927; (c) Gaulier, S. M.;
McKay, R.; Swain, N. A. Tetrahedron Lett. 2011, 52, 6000-6002;
(d) Yang, Y.; Kuang, C.; Jin, H.; Yang, Q.; Zhang, Z. Beil. J. Org.
Chem. 2011, 1656-1662; (e) Yan, T.; Chen, L.; Bruneau, C.;
Dixneuf, P. H.; Doucet, H. J. Org. Chem. 2012, 77, 7659-7664;
For examples of Pd-catalysed direct intramolecular 5-arylations of
pyrazoles: (f) Choi, Y. L.; Lee, H.; Kim, B. T.; Choi, K.; Heo, J.-
N. Adv. Synth. Catal. 2010, 352, 2041-2049.
Acknowledgments
We thank the Centre National de la Recherche Scientifique,
“Rennes Metropole”, the Université Mohamed Premier and
“Faculté des Sciences d’Oujda” for providing financial support.
References and notes
11. For examples of palladium-catalysed direct intermolecular 4-
arylations of 5-substituted pyrazoles: (a) Fall, Y.; Doucet, H.;
Santelli, M. Synthesis 2010, 127-135; (b) Derridj, F.; Roger, J.;
Djebbar, S.; Doucet, H. Adv. Synth. Catal. 2012, 354, 747-750;
see also ref 10e.
1. a) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry,
Pergamon: Amsterdam, 2000; b) Negishi, E. Ed. Handbook of
Organopalladium Chemistry for Organic Synthesis; Wiley-
Interscience: New York, 2002; Part III, p 213.
2.
For synthesis of arylpyrazoles using Suzuki coupling: (a) Walker,
S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2004, 43, 1871-1876; (b) Liu, B.; Moffett, K. K.;
Joseph, R. W.; Dorsey, B. D. Tetrahedron Lett. 2005, 46, 1779-
1782; (c) Lory, P. M. J.; Agarkov, A.; Gilbertson, S. R. Synlett
2006, 3045-3048; (d) Kudo, N.; Perseghini, M.; Fu, G. C. Angew.
Chem., Int. Ed. 2006, 45, 1282-1284; (e) Guram, A. S.; King, A.
O.; Allen, J. G.; Wang, X.; Schenkel, L. B.; Chan, J.; Bunel, E. E.;
Faul, M. M.; Larsen, R. D.; Martinelli, M. J.; Reider, P. J. Org.
Lett. 2006, 8, 1787-1789; (f) Gerard, A.-L.; Bouillon, A.;
Mahatsekake, C.; Collot, V.; Rault, S. Tetrahedron Lett. 2006, 47,
4665-4669; (g) Li, H.-y.; Wang, Y.; McMillen, W. T.; Chatterjee,
A.; Toth, J. E.; Mundla, S. R.; Voss, M.; Boyer, R. D.; Sawyer, J.
S. Tetrahedron 2007, 63, 11763-11770; (h) Browne, D. L.; Helm,
M. D.; Plant, A.; Harrity, J. P. A. Angew. Chem., Int. Ed. 2007, 46,
8656-8658; (i) Nolt, M. B.; Zhao, Z.; Wolkenberg, S. E.
Tetrahedron Lett. 2008, 49, 3137-3141; (j) Khera, R. A.; Ali, A.;
Rafique, H.; Hussain, M.; Tatar, J.; Saeed, A.; Villinger, A.;
Langer, P. Tetrahedron 2011, 67, 5244-5253; (k) Kirkham, J. D.;
Edeson, S. J.; Stokes, S.; Harrity, J. P. A. Org. Lett. 2012, 14,
5354-5357.
12. For an example of triarylation of a pyrazole: Shibahara, F.;
Yamaguchi, E.; Murai, T. J. Org. Chem. 2011, 76, 2680-2693.
13. Gorelsky, S. I. Coord. Chem. Rev. 2013, 257, 153-164.
14. General procedure for the direct diarylation of 1-methylpyrazole
1, 1-phenylpyrazole 21 and 3-methyl-1-phenylpyrazole 23: In a
typical experiment, the aryl bromide (3 mmol), heteroaromatic 1,
21 or 23 (1 mmol), KOAc (0.588 g,
6 mmol) and
PdCl(C3H5)(dppb)16 (0.012 g, 0.02 mmol) were dissolved in DMA
(4 mL) under an argon atmosphere. The reaction mixture was
stirred at 150 °C for 72 h. Then, the solvent was evaporated and
the product was purified by silica gel column chromatography.
15. All new compounds gave satisfactory 1H, 13C and elementary
analysis. 4-(2-Methylpyrazol-3-yl)-benzonitrile (2a):9b 1H (400
MHz, CDCl3) δ = 7.79 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.5 Hz,
2H), 7.55 (d, J = 1.8 Hz, 1H), 6.39 (d, J = 1.8 Hz, 1H), 3.92 (s,
3H). 4-(1-Methylpyrazol-4-yl)-benzonitrile (2b):9b 1H (400
MHz, CDCl3) δ = 7.82 (s, 1H), 7.71 (s, 1H), 7.69 (d, J = 8.5 Hz,
2H), 7.62 (d, J = 8.5 Hz, 2H), 3.99 (s, 3H). 1-Methyl-4,5-bis[(4-
cyanophenyl)]-pyrazole (2c):9b 1H (400 MHz, CDCl3) δ= 7.81 (d,
J = 8.5 Hz, 2H), 7.79 (s, 1H), 7.50 (d, J = 8.5 Hz, 2H), 7.45 (d, J =
8.5 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 3.83 (s, 3H).
3. For synthesis of arylpyrazoles using Negishi coupling: (a) Balle,
T.; Andersen, K.; Vedso, P. Synthesis 2002, 1509-1512; (b) Milne,
J. E.; Buchwald, S. L. J. Am. Chem. Soc. 2004, 126, 13028-13032.
16. Cantat, T.; Génin, E.; Giroud, C.; Meyer, G.; Jutand, A. J.
Organomet. Chem. 2003, 687, 365-376.