Journal of the American Chemical Society
Communication
354, 1867. (f) Meng, F.; Jung, B.; Haeffner, F.; Hoveyda, A. H. Org. Lett.
2013, 15, 1414. (g) Semba, K.; Shinomiya, M.; Fujihara, T.; Terao, J.;
Tsuji, Y. Chem.Eur. J. 2013, 19, 7125. (h) Meng, F.; Jang, H.; Jung, B.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2013, 52, 5046−5051.
inconsequential 50:50 mixture of E and Z alkene isomers. Direct
treatment of 14 (without purification) with 1.1 equiv of AgPF6
for 3 h15 delivered heterocyclic alkenyl iodide 15 in 76% overall
yield (1.08 g) and >98:2 diastereomeric ratio (dr). epi-
Cytoxazone was obtained after conversion of the alkenyl iodide
to the requisite primary alcohol in two steps and 75% overall
yield (Scheme 7). There are two additional noteworthy points
regarding the sequence shown in Scheme 7: (1) The synthesis
route was completed (including two chromatographic purifica-
tions) within 8 h to afford 0.52 g of epi-cytoxazone (57% overall
yield from 7f). (2) The requisite diiodide (14) would not be
easily accessible through modification of the alkene of a
homoallylamine16 or the alkyne unit of a homopropargyl
variant.17 The latter distinction also applies to the intermediates
generated in Scheme 5b en route to anisomycin.
In conclusion, we put forth the first general method for
efficient and enantioselective addition of an allenyl unit to a range
of aldimines, including the more challenging alkyl-substituted
substrates. The resulting Boc-protected amides can be readily
converted to the corresponding amines in high yield.18
Applications to enantioselective syntheses of representative N-
containing target molecules highlight the useful functionalization
possibilities, rendered feasible by the presence of an allenyl unit,
and which can be performed in a practical and reliable fashion on
a significant laboratory scale. The present investigations further
underscore the applicability of chiral B-based catalysts derived
from the aminoalcohol family of compounds (e.g., 1) to the
development of new and selective protocols in chemical
synthesis.
(3) For recent reviews in connection to the utility of allenes in chemical
synthesis, see: (a) Yu, S.; Ma, S. Angew. Chem., Int. Ed. 2012, 51, 3074.
(b) Lop
́
ez, F.; Mascarenas, J. L. Chem.Eur. J. 2011, 17, 418.
̃
(4) (a) Cowen, B. J.; Saunders, L. B.; Miller, S. J. J. Am. Chem. Soc.
2009, 131, 6105. (b) Hashimoto, T.; Sakata, K.; Tamakuni, F.; Dutton,
M. J.; Maruoka, K. Nature Chem. 2013, 5, 240. (c) Huang, Y.-Y.;
Chakrabarti, A.; Morita, N.; Schneider, U.; Kobayashi, S. Angew. Chem.,
Int. Ed. 2011, 50, 11121.
(5) For a recent report on NHC−Cu-catalyzed enantioselective
synthesis of 1-trimethylsilyl-substituted homoallenylamides, see: Mszar,
N. W.; Haeffner, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2014,
DOI: 10.1021/ja500373s.
(6) (a) Sobin, B. A.; Tanner, F. W., Jr. J. Am. Chem. Soc. 1954, 76, 4053.
(b) Battaner, E.; Vasquez, D. Biochim. Biophys. Acta Nucleic Acids Protein
Synth. 1971, 254, 316. (c) Grollman, A. P. J. Biol. Chem. 1967, 242, 3226.
(d) Schwardt, O.; Veith, U.; Gaspard, C.; Jager, V. Synthesis 1999, 1473.
̈
(7) (a) Kakeya, H.; Morishita, M.; Kobinata, K.; Osono, M.; Ishizuka,
M.; Osada, H. J. Antibiot. 1998, 51, 1126. (b) Kakeya, H.; Morishita, M.;
Koshino, H.; Morita, T.-i.; Kobayashi, K.; Osada, H. J. Org. Chem. 1999,
64, 1052.
(8) Silverio, D. L.; Torker, S.; Pilyugina, T.; Vieira, E. M.; Snapper, M.
L.; Haeffner, F.; Hoveyda, A. H. Nature 2013, 494, 216.
(9) In the absence of amino alcohol 1, but under otherwise identical
conditions, ca. 20% conversion to a 25:75 mixture of 4:5 was observed.
(10) See the Supporting Information for details.
(11) For quantification of electrophilicity levels for various aldimines,
see: Appel, R.; Mayr, H. J. Am. Chem. Soc. 2011, 133, 8240.
(12) (a) Schumacher, D. P.; Hall, S. S. J. Am. Chem. Soc. 1982, 104,
6076. (b) Meyers, A. I.; Dupre, B. Heterocycles 1987, 25, 113.
(13) Detz, R. J.; Abiri, Z.; le Griel, R.; Hiemstra, H.; van Maarseveen, J.
H. Chem.Eur. J. 2011, 17, 5921.
Investigations regarding the utility of the present B-based class
of chiral catalysts and their applications in practical and
enantioselective chemical synthesis are underway.
(14) For previous studies in connection to enantioselective synthesis of
epi-cytoxazone, see: (a) Matsunaga, S.; Yoshida, T.; Morimoto, H.;
Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8777.
(b) Sohtome, Y.; Hashimoto, Y.; Nagasawa, K. Eur. J. Org. Chem. 2006,
13, 2894. (c) Kim, I. S.; Kim, J. D.; Ryn, C. B.; Zee, O. P.; Jung, Y. H.
Tetrahedron 2006, 62, 9349. (d) Mishra, R. K.; Coates, C. M.; Revell, K.
D.; Turos, E. Org. Lett. 2007, 9, 575. (e) Reddy, R. S.; Chouthaiwale, P.
V.; Suryavanshi, G.; Chavan, V. B.; Sudalai, A. Chem. Commun. 2010, 46,
5012. (f) Qian, Y.; Xu, X.; Jiang, L.; Prajapati, D.; Hu, W. J. Org. Chem.
2010, 75, 7483.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, spectral and analytical data for all
products, as well as crystallographic (CIF) and computational
data. This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
(15) Friesen, R. W.; Giroux, A. Can. J. Chem. 1994, 72, 1857.
(16) For recent examples of catalytic enantioselective allyl additions to
aldimines, see: (a) Kargbo, R.; Takahashi, Y.; Bhor, S.; Cook, G. R.;
Lloyd-Jones, G. C.; Shepperson, I. R. J. Am. Chem. Soc. 2007, 129, 3846.
(b) Tan, K. L.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2007, 46, 1315.
(c) Kim, S. J.; Jang, D. O. J. Am. Chem. Soc. 2010, 132, 12168. (d) Lou, S.;
Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2007, 129, 15398.
(e) Fujita, M.; Nagano, T.; Schneider, U.; Hamada, T.; Ogawa, C.;
Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 2914. (f) Naodovic, M.;
Wadamoto, M.; Yamamoto, H. Eur. J. Org. Chem. 2009, 30, 5129.
(g) Chakrabarti, A.; Konishi, H.; Yamaguchi, M.; Schneider, U.;
Kobayashi, S. Angew. Chem., Int. Ed. 2010, 49, 1838. (h) Vieira, E. M.;
Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 3332−3335.
(i) Ref 8.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by the National Institutes of
Health (GM-57212). We thank D. L. Silverio, N. W. Mszar, and
Dr. S. Torker for helpful discussions, and Dr. Bo Li for assistance
with obtaining the X-ray data. We thank Boston College
Research Services for access to computational facilities.
(17) For catalytic enantioselective synthesis of homopropargylamines,
see: (a) Kagoshima, H.; Uzawa, T.; Akiyama, T. Chem. Lett. 2002, 31,
298. (b) Wisniewska, H. M.; Jarvo, E. R. Chem. Sci. 2011, 2, 807.
(c) Vieira, E. M.; Haeffner, F.; Snapper, M. L.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2012, 51, 6618.
REFERENCES
■
(1) For an overview of catalytic enantioselective additions of allenyl
and propargyl groups to ketones and imines, see: Wisniewska, H. M.;
Jarvo, E. R. J. Org. Chem. 2013, 78, 11629.
(2) For examples, see: (a) Modern Allene Chemistry; Krause, N.,
Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004.
(b) Burks, H. E.; Liu, S.; Morken, J. P. J. Am. Chem. Soc. 2007, 129, 8766.
(c) Zbieg, J. R.; McInturff, E. L.; Leung, J. C.; Krische, M. J. J. Am. Chem.
Soc. 2011, 133, 1141. (d) Cooke, M. L.; Xu, K.; Breit, B. Angew. Chem.,
Int. Ed. 2012, 51, 10876. (e) Yuan, W.; Ma, S. Adv. Synth. Catal. 2012,
(18) Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in
Organic Synthesis, 4th ed.; John Wiley and Sons: New York, 2007.
3783
dx.doi.org/10.1021/ja500374p | J. Am. Chem. Soc. 2014, 136, 3780−3783