the ethyl ester moiety was subjected to transesterification with the
matched (S)-4-pentene-2-ol to furnish (+)-13 (Scheme 3).9,13
In (+)-13, we had the precursor well poised for implementing the
key RCM protocol. Indeed, exposure of (+)-13 to the second
generation Grubbs catalyst 1414 resulted in the smooth generation
of the bicyclic framework (+)-15 embodying the decalactone
moiety (Scheme 4). At this stage, the logical endeavour was to
selectively reduce the cyclodecene double bond but this proved to
be quite difficult despite many variations in the catalyst and
hydrogenation conditions. Consequently, an alternate strategy
was devised. Pd(II)-mediated chemoselective TBS-deprotection15 of
(+)-15 and subsequent oxidation of the generated hydroxyl
functionality with Dess–Martin periodinane16 delivered the enone
(+)-16.9 Catalytic hydrogenation of (+)-16 led to the fully saturated
bicycle (2)-17 in which the enone double bond needed to be
Notes and references
1 H. Richet, J. Mohammed, L. C. McDonald and W. R. Jarvis, Emerging
Infect. Dis., 2001, 7, 319.
2 (a) J.-P. Bouche´, K. Zechel and A. Kornberg, J. Biol. Chem., 1975, 250,
5995; (b) K.-I. Arai and A. Kornberg, Proc. Natl. Acad. Sci. U. S. A.,
1979, 76, 4308.
3 (a) M. Grompe, J. Versalovic, T. Koeuth and J. R. Lupski, J. Bacteriol.,
1991, 173, 1268; (b) P. Shrimankar, L. Stordal and R. J. Maurer,
J. Bacteriol., 1992, 174, 7689.
4 M. Chu, R. Mierzwa, L. Xu, L. He, J. Terracciano, M. Patel, V. Gullo,
T. Black, W. Zhao, T. Chan and A. T. McPhail, J. Nat. Prod., 2003, 66,
1527.
5 V. R. Hegde, H. Pu, M. Patel, T. Black, A. Soriano, W. Zhao,
V. P. Gullo and T.-M. Chan, Bioorg. Med. Chem. Lett., 2004, 14,
2275.
6 H. Jayasuriya, D. L. Zink, J. D. Polishook, G. F. Bills,
A. W. Dombrowski, O. Genilloud, F. F. Pelacz, L. Herranz,
D. Quamina, R. B. Lingham, R. Danzeizem, P. L. Graham,
J. E. Tomassini and S. B. Singh, Chem. Biodiversity, 2005, 2, 112.
7 S. K. Arya, C. Guo, S. F. Josephs and F. Wong-Staal, Science, 1985,
229, 69.
8 (a) S. Takano, Y. Higashi, T. Kamikubo, M. Moriya and K. Ogaswara,
Synthesis, 1993, 948; (b) H. Konno and K. Ogaswara, Synthesis, 1999,
1135; (c) G. Mehta and K. Islam, Synlett, 2000, 1473.
9 All new compounds were fully characterized on the basis of their IR,
1H-NMR, 13C-NMR, and HRMS data (see ESI{).
10 For an anion-assisted sigmatropic rearrangements, see: S. R. Wilson,
Org. React., 1993, 43, 93.
11 K. F. Podraza and R. L. Bassfield, J. Org. Chem., 1989, 54, 5919.
12 A. L. Gemal and J. L. Luche, J. Am. Chem. Soc., 1981, 103,
5454.
13 D. Seebach, E. Hungerbu¨hler, R. Naef, P. Schnurrenberger,
B. Weidmann and M. Zu¨ger, Synthesis, 1982, 138.
14 (a) M. Scholl, S. Ding, C. W. Lee and R. H. Grubbs, Org. Lett., 1999, 1,
953; (b) For recent reviews on RCM, see: (i) A. Fu¨rstner, Angew. Chem.,
Int. Ed., 2000, 39, 3012; (ii) T. M. Trnka and R. H. Grubbs, Acc. Chem.
Res., 2001, 34, 18.
15 (a) N. S. Wilson and B. A. Keay, J. Org. Chem., 1996, 61, 2918; (b)
B. H. Lipshutz, D. Pollart, J. Monforte and H. Kotsuki, Tetrahedron
Lett., 1985, 26, 705.
16 D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4155.
17 H. J. Reich, J. M. Renga and I. L. Reich, J. Am. Chem. Soc., 1975, 97,
5434.
18 A. B. Smith, III and G. R. Ott, J. Am. Chem. Soc., 1996, 118,
13095.
restored.9 This was accomplished via
a phenylselenation–
selenoxide elimination sequence.17 Thus, phenylselenation of
(2)-17 was effected under kinetically controlled conditions to give
an a-phenylseleno compound which was directly oxidized with
hydrogen peroxide to deliver the penultimate product (+)-18
(Scheme 4).9 Finally, the TBDPS protection in (+)-18 was carefully
removed with TBAF buffered with an equimolar amount of acetic
acid,18 to furnish the target molecule Sch 642305 (+)-1. Our
synthetic (+)-1 was found to be spectroscopically identical to the
natural product (see ESI{) and its [a]D + 71.0u (c, 0.31, CH3OH)
matched well with the reported values of [a]D + 67.44u (c, 0.50,
CH3OH) for (+)-1.4
In summary, we have accomplished the first total synthesis of
the bioactive natural product Sch 642305 (+)-1, through a concise,
stereo- and enantioselective strategy which lends itself amenable to
diversity creation for further exploring its therapeutic potential in
the light of promising initial leads.
We thank Mr Atsuya Hirano and Mr Tan Nakagawa, Amano
Enzyme Co., Nagoya, Japan for their generous gift of lipase PS-D.
HMS, thanks CSIR, India for the award of a research fellowship.
This research was supported by the Chemical Biology Unit of the
JNCASR in Bangalore.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 3703–3705 | 3705