Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Tian and G. Li, J. Org. Chem., 2018, 83,D5O7I:81;0(.1f0) 3Q9./DY0aCnCg0, 1C8.1L5iE,
This work was supported by the Carl-Zeiss Foundation
(endowed professorship to I.V.), Friedrich Schiller University
Jena and the State of Thuringia (graduate fellowship to M.L.) is
gratefully acknowledged. We thank Dr. Peter Bellstedt, and Dr.
Nico Ueberschaar for their support with NMR and MS analysis.
Z. C. Qi, X. Y. Qiang and S. D. Yang, Chem. Eur. J., 2018, 24
,
14363; (g) J. W. Gu and X. Zhang, Org. Lett., 2015, 17, 5384;
(h) S. ang, W.-L. Jia, L. Wang and Q. Liu, Eur. J. Org. Chem.,
2015, 6817; (i) M. Zhu, W. Fu, G. Zou, C. Xu and Z. Wang, J.
Fluorine Chem., 2015, 180, 1.
11 (a) Z. Feng, F. Chen and X. Zhang, Org. Lett., 2012, 14, 1938;
(b) W. Qiu and D. J. Burton, J. Fluorine Chem., 2013, 155, 45;
Conflicts of interest
(c) Z. Feng, Y.-L. Xiao and X. Zhang, Org. Chem. Front., 2014, 1,
113; (d) A. Bayle, C. Cocaud, C. Nicolas, O. R. Martin, T. Poisson
and X. Pannecoucke, Eur. J. Org. Chem., 2015, 3787; (e) M. V.
Ivanova, A. Bayle, T. Besset, T. Poisson and X. Pannecoucke,
Angew. Chem. Int. Ed., 2015, 54, 13406; (f) Z. Feng, Q. Q. Min,
Y. L. Xiao, B. Zhang and X. Zhang, Angew. Chem. Int. Ed., 2014,
53, 1669; (g) C. Alter, B. Neumann, H.-G. Stammler, L. Weber
and B. Hoge, Eur. J. Inorg. Chem., 2017, 3489; (h) M. V.
Ivanova, A. Bayle, T. Besset, X. Pannecoucke and T. Poisson,
Chem. Eur. J., 2017, 23, 17318; (i) T. Poisson, M. Ivanova, T.
Besset and X. Pannecoucke, Synthesis, 2017, 50, 778; (j) Z.
Feng, Y. L. Xiao and X. Zhang, Acc. Chem. Res., 2018, 51, 2264.
12 B. M. Trost, H. Gholami and D. Zell, J. Am. Chem. Soc., 2019,
141, 11446.
13 (a) A. Alexakis, J. Backvall, N. Krause, O. Pàmies and M.
Diéguez, Chem. Rev., 2008, 108, 2796; (b) Q. Cheng, H.-F. Tu,
C. Zheng, J.-P. Qu, G. Helmchen and S.-L. You, Chem. Rev.,
2018, 119, 1855; (c) G. N. Ma, J. J. Jiang, M. Shi and Y. Wei,
Chem. Commun., 2009, 5496; (d) Y. Wei and M. Shi, Chem.
Rev., 2013, 113, 6659.
14 (a) B. M. Trost and C.-J. Li, J. Am. Chem. Soc., 1994, 116, 3167;
(b) D. Virieux, A.-F. Guillouzic and H.-J. Cristau, Tetrahedron,
2006, 62, 3710; (c) C. K. Pei, X. C. Zhang and M. Shi, Eur. J. Org.
Chem., 2011, 4479; (d) L. Zhu, H. Hu, L. Qi, Y. Zheng and W.
Zhong, Eur. J. Org. Chem., 2016, 2139.
15 (a) Y. Zi, M. Lange, C. Schultz and I. Vilotijevic, Angew. Chem.
Int. Ed., 2019, 58, 10727; (b) M. Lange, Y. Zi and I. Vilotijevic,
J. Org. Chem., 2020, 85, 1259; (c) Y. Zi, M. Lange, P. Schüler, S.
Krieck, M. Westerhausen and I. Vilotijevic, Synlett, DOI:
10.1055/s-0039-1691570..
16 We use the term latent nucleophile for N-silyl compounds
because the silyl group attenuates the nucleophilicity of the
otherwise nucleophilic N-H analogue. For C-centered
nucleophile, the preferred term is latent pronucleophile
because both the C-silyl compound and the C-H analogue are
normally not nucleophilic (latent) and are therefore only
pronucleophiles.
17 (a) T. Nishimine, K. Fukushi, N. Shibata, H. Taira, E. Tokunaga,
A. Yamano, M. Shiro and N. Shibata, Angew. Chem. Int. Ed.,
2014, 53, 517; (b) T. Nishimine, H. Taira, E. Tokunaga, M. Shiro
and N. Shibata, Angew. Chem. Int. Ed., 2016, 55, 359; (c) S.
Okusu, H. Okazaki, E. Tokunaga, V. A. Soloshonok and N.
Shibata, Angew. Chem. Int. Ed., 2016, 55, 6744; (d) T.
Nishimine, H. Taira, S. Mori, O. Matsubara, E. Tokunaga, H.
Akiyama, V. A. Soloshonok and N. Shibata, Chem. Commun.,
2017, 53, 1128.
18 With multiple ligands on silicon of the proposed silicate
complex, the decomposition of the silicate should produce
the most stable anion/weakest base. For N-trialkylsilyl latent
nucleophiles, this is always the N-centered anion by virtue of
all N-H compounds being more acidic than the corresponding
alkanes. The same strategy applied to C-trialkylsilyl latent
ponucleophiles, requires the stabilized carbon nucleophile to
be produced to avoid selectivity issues (stabilized C-
nucleophile vs. alkyl nucleophile). Shibata has shown that CF3
and alkynyl nucleophiles can be introduced via this strategy.
19 M. D. Greenhalgh, J. E. Taylor and A. D. Smith, Tetrahedron,
2018, 74, 5554.
There are no conflicts to declare.
Notes and references
1
(a) K. Müller, C. Faeh and F. Diederich, Science, 2007, 317,
1881; (b) S. Purser, P. R. Moore, S. Swallow and V.
Gouverneur, Chem. Soc. Rev., 2008, 37, 320; (c) J. Wang, M.
Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S.
Fustero, V. A. Soloshonok and H. Liu, Chem. Rev., 2014, 114
2432.
,
2
(a) A. Talukdar, E. Morgunova, J. Duan, W. Meining, N.
Foloppe, L. Nilsson, A. Bacher, B. Illarionov, M. Fischer and R.
Ladenstein, Bioorg. Med. Chem., 2010, 18, 3518; (b) P. K.
Mandal, F. Gao, Z. Lu, Z. Ren, R. Ramesh, J. S. Birtwistle, K. K.
Kaluarachchi, X. Chen, R. C. Bast Jr and W. S. Liao, J. Med.
Chem., 2011, 54, 3549; (c) W. Hoffmann, J. Langenhan, S.
Huhmann, J. Moschner, R. Chang, M. Accorsi, J. Seo, J.
Rademann, G. Meijer, B. Koksch, M. T. Bowers, G. von Helden
and K. Pagel, Angew. Chem. Int. Ed., 2019, 58, 8216.
V. P. Kukhar, H. R. Hudson, Aminophosphonic and
Aminophosphinic Acids, Chemistry and Biological Activity,
Wiley, Chichester, UK, 2000.
3
4
5
M. Köhn and C. Meyer, Synthesis, 2011, 20, 3255.
P. K. Mandal, F. Gao, Z. Lu, Z. Ren, R. Ramesh, J. S. Birtwistle,
K. K. Kaluarachchi, X. Chen, R. C. Bast, Jr., W. S. Liao and J. S.
McMurray, J. Med. Chem., 2011, 54, 3549.
6
7
C. Cocaud, C. Nicolas, T. Poisson, X. Pannecoucke, C. Y. Legault
and O. R. Martin, J. Org. Chem., 2017, 82, 2753.
(a) D. P. Phillion and D. G. Cleary, J. Org. Chem., 1992, 57
,
2763; (b) T. Delaunay, T. Poisson, P. Jubault and X.
Pannecoucke, J. Fluorine Chem., 2015, 171, 56.
8
9
N. Levi, D. Amir, E. Gershonov and Y. Zafrani, Synthesis, 2019,
51, 4549.
(a) D. B. Berkowitz, M. Eggen, Q. Shen and R. K. Shoemaker, J.
Org. Chem., 1996, 61, 4666; (b) A. H. Butt, J. M. Percy and N.
S. Spencer, Chem. Commun., 2000, 1691; (c) G.-V.
Röschenthaler, V. Kukhar, J. Barten, N. Gvozdovska, M. Belik
and A. Sorochinsky, Tetrahedron Lett., 2004, 45, 6665; (d) S.
Mizuta, N. Shibata, S. Ogawa, H. Fujimoto, S. Nakamura and T.
Toru, Chem. Commun., 2006, 2575; (e) A. V. Alexandrova and
P. Beier, J. Fluorine Chem., 2009, 130, 493; (f) M. D.
Kosobokov, A. D. Dilman, M. I. Struchkova, P. A. Belyakov and
J. Hu, J. Org. Chem., 2012, 77, 2080; (g) S. Bouwman, R. V. Orru
and E. Ruijter, Org. Biomol. Chem., 2015, 13, 1317; (h) M. Das
and D. F. O'Shea, Chem. Eur. J., 2015, 21, 18717; (i) Q. Chen, J.
Zhou, Y. Wang, C. Wang, X. Liu, Z. Xu, L. Lin and R. Wang, Org.
Lett., 2015, 17, 4212; (j) Y. H. Wang, Z. Y. Cao and J. Zhou, J.
Org. Chem., 2016, 81, 7807; (k) Y. Yamamoto, Y. Ishida, Y.
Takamizu and T. Yasui, Adv. Synth. Catal., 2019, 361, 3739; (l)
V. Krishnamurti, C. Barrett and G. K. S. Prakash, Org. Lett.,
2019, 21, 1526; (m) K. Panigrahi, X. Fei, M. Kitamura and D. B.
Berkowitz, Org. Lett., 2019, 21, 9846.
10 (a) T. Fuchigami, S. Murakami, S. Kim and H. Ishii, Synlett,
2004, 815; (b) L. Wang, X. J. Wei, W. L. Lei, H. Chen, L. Z. Wu
and Q. Liu, Chem. Commun., 2014, 50, 15916; (c) J. Xie, T.
Zhang, F. Chen, N. Mehrkens, F. Rominger, M. Rudolph and A.
S. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 2934; (d) G. Yin,
M. Zhu, G. Yang, X. Wang and W. Fu, J. Fluorine Chem., 2016,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins