Journal of Agricultural and Food Chemistry
ARTICLE
synbiotics to enhance human health: an overview of enabling science and
potential applications. FEMS Microbiol. Ecol. 2005, 52, 145–152.
(14) Gosling, A.; Stevens, G. W.; Barber, A. R.; Kentish, S. E.; Gras,
S. L. Recent advances refining galactooligosaccharide production from
lactose. Food Chem. 2010, 121, 307–318.
(34) Schwab, C.; Lee, V.; Sorensen, K. I.; Ganzle, M. G. Production
of galactooligosaccharides and heterooligosaccharides with disrupted
cell extracts and whole cells of lactic acid bacteria and bifidobacteria. Int.
Dairy J. 2011, 21, 748–754.
(35) Matioli, G.; De Moraes, F. F.; Zanin, G. M. Operational stability
and kinetics of lactose hydrolysis by β-galactosidase from Kluyveromyces
fragilis. Acta Sci. Health Sci. 2003, 25, 7–12.
(36) Prasad, S.; Roy, I. Effect of disaccharides on the stabilization of
bovine trypsin against detergent and autolysis. Biotechnol. Prog. 2010,
26, 627–635.
(37) Ghazi, I.; Fernandez-Arrojo, L.; Garcia-Arellano, H.; Ferrer, M.;
Ballesteros, A.; Plou, F. J. Purification and kinetic characterization of a
fructosyltransferase from Aspergillus aculeatus. J. Biotechnol. 2007, 128,
204–211.
(38) Plou, F. J.; Martin, M. T.; Gomez de Segura, A.; Alcalde, M.;
Ballesteros, A. Glucosyltransferases acting on starch or sucrose for the
synthesis of oligosaccharides. Can. J. Chem. 2002, 80, 743–752.
(39) Plou, F. J.; Gomez de Segura, A.; Ballesteros, A. Application of
glycosidases and transglycosidases for the synthesis of oligosaccharides.
In Industrial Enzymes: Structure, Function and Application; Polaina, J.,
MacCabe, A. P., Eds.; Springer: New York, 2007; pp 141À157.
(40) Buchholz, K.; Kasche, V.; Bornscheuer, U. T. Biocatalysts and
Enzyme Technology; Wiley-VCH Verlag: Weinheim, Germany, 2005.
(41) Cheng, C. C.; Yu, M. C.; Cheng, T. C.; Sheu, D. C.; Duan, K. J.;
Tai, W. L. Production of high-content galacto-oligosaccharide by
enzyme catalysis and fermentation with Kluyveromyces marxianus.
Biotechnol. Lett. 2006, 28, 793–797.
(42) Rabiu, B. A.; Jay, A. J.; Gibson, G. R.; Rastall, R. A. Synthesis and
fermentation properties of novel galacto-oligosaccharides by β-galacto-
sidases from Bifidobacterium species. Appl. Environ. Microbiol. 2001,
67, 2526–2530.
(43) Hansson, T.; Adlercreutz, P. Optimization of galactooligosac-
charide production from lactose using β-glycosidases from hyperther-
mophiles. Food Biotechnol. 2001, 15, 79–97.
(15) Martinez-Villaluenga, C.; Cardelle-Cobas, A.; Corzo, N.; Olano,
A.; Villamiel, M. Optimization of conditions for galactooligosaccharide
synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces
lactis (Lactozym 3000 L HP G). Food Chem. 2008, 107, 258–264.
(16) Chockchaisawasdee, S.; Athanasopoulos, V. I.; Niranjan, K.;
Rastall, R. A. Synthesis of galacto-oligosaccharide from lactose using
β-galactosidase from Kluyveromyces lactis: studies on batch and continuous
UF membrane-fitted bioreactors. Biotechnol. Bioeng. 2005, 89, 434–443.
(17) Maugard, T.; Gaunt, D.; Legoy, M. D.; Besson, T. Microwave-
assisted synthesis of galacto-oligosaccharides from lactose with immobilized
β-galactosidase from Kluyveromyces lactis. Biotechnol. Lett. 2003, 25, 623–629.
(18) Pinho, J. M. R.; Passos, F. M. L. Solvent extraction of
β-galactosidase from Kluyveromyces lactis yields a stable and highly
active enzyme preparation. J. Food Biochem. 2011, 35, 323–336.
(19) Pal, A.; Pal, V.; Ramana, K. V.; Bawa, A. S. Biochemical studies
of β-galactosidase from Kluyveromyces lactis. J. Food Sci. Technol. 2009,
46, 217–220.
(20) Zhou, Q. Z. K.; Chen, X. D. Effects of temperature and pH on
the catalytic activity of the immobilized β-galactosidase from Kluyver-
omyces lactis. Biochem. Eng. J. 2001, 9, 33–40.
(21) Zhou, Q. Z.; Chen, X. D.; Li, X. Kinetics of lactose hydrolysis by
β-galactosidase of Kluyveromyces lactis immobilized on cotton fabric.
Biotechnol. Bioeng. 2003, 81, 127–133.
(22) Siso, M. I. G.; Cerdan, E.; Picos, M. A. F.; Ramil, E.; Belmonte,
E. R.; Torres, A. R. Permeabilization of Kluyveromyces lactis cells for milk
whey saccharification: a comparison of different treatments. Biotechnol.
Tech. 1992, 6, 289–292.
(23) Fontes, E. A. F.; Passos, F. M. L.; Passos, F. J. V. A mechanistical
mathematical model to predict lactose hydrolysis by β-galactosidase in a
permeabilized cell mass of Kluyveromyces lactis: validity and sensitivity
analysis. Process Biochem. 2001, 37, 267–274.
(44) Ghazi, I.; Fernandez-Arrojo, L.; Gomez de Segura, A.; Alcalde,
M.; Plou, F. J.; Ballesteros, A. Beet sugar syrup and molasses as low-cost
feedstock for the enzymatic production of fructo-oligosaccharides.
J. Agric. Food Chem. 2006, 54, 2964–2968.
(45) Alvaro-Benito, M.; De Abreu, M.; Fernandez-Arrojo, L.; Plou,
F. J.; Jimenez-Barbero, J.; Ballesteros, A.; Polaina, J.; Fernandez-Lobato,
M. Characterization of a β-fructofuranosidase from Schwanniomyces
occidentalis with transfructosylating activity yielding the prebiotic 6-kestose.
J. Biotechnol. 2007, 132, 75–81.
(24) Kondo, A.; Liu, Y.; Furuta, M.; Fujita, Y.; Matsumoto, T.;
Fukuda, H. Preparation of high activity whole cell biocatalyst by per-
meabilization of recombinant flocculent yeast with alcohol. Enzyme
Microbial Technol. 2000, 27, 806–811.
(25) Boon, M. A.; Janssen, A. E. M.; Van’t Riet, K. Effect of tem-
perature and enzyme origin on the enzymatic synthesis of oligosacchar-
ides. Enzyme Microbial Technol. 2000, 26, 271–281.
(26) Prenosil, J. E.; Stuker, E.; Bourne, J. R. Formation of oligosac-
charides during enzymatic lactose hydrolysis and their importance in a
whey hydrolysis process: part II. Experimental. Biotechnol. Bioeng. 1987,
30, 1026–1031.
(46) Rodriguez-Alegria, M. E.; Enciso-Rodriguez, A.; Ortiz-Soto,
M. E.; Cassani, J.; Olvera, C.; Lopez-Munguia, A. Fructooligosaccharide
production by a truncated Leuconostoc citreum inulosucrase mutant.
Biocatal. Biotransform. 2010, 28, 51–59.
(27) Manera, A. P.; De Almeida, F. A.; Rodrigues, M. I.; Kalil, S. J.;
Filho, F. M. Galacto-oligosaccharides production using permeabilized
cells of Kluyveromyces marxianus. Int. J. Food Eng. 2010, 6, 1–13.
(28) Genari, A. N.; Passos, F. V.; Passos, F. M. L. Configuration of a
bioreactor for milk lactose hydrolysis. J. Dairy Sci. 2003, 86, 2783–2789.
(29) Panesar, R.; Panesar, P. S.; Singh, R. S.; Kennedy, J. F.; Bera,
M. B. Production of lactose-hydrolyzed milk using ethanol permeabi-
lized yeast cells. Food Chem. 2007, 101, 786–790.
(30) Lee, Y. J.; Kim, C. S.; Oh, D. K. Lactulose production by
β-galactosidase in permeabilized cells of Kluyveromyces lactis. Appl.
Microbiol. Biotechnol. 2004, 64, 787–793.
(31) Panesar, R.; Panesar, P. S.; Singh, R. S.; Kennedy, J. F. Hydro-
lysis of milk lactose in a packed bed reactor system using immobilized
yeast cells. J. Chem. Technol. Biotechnol. 2011, 86, 42–46.
(32) Stred’ansky, M.; Tomaska, M.; Sturdik, E.; Kremnicky, L.
Optimization of β-galactosidase extraction from Kluyveromyces marx-
ianus. Enzyme Microbial Technol. 1993, 15, 1063–1065.
(33) Puri, M.; Gupta, S.; Pahuja, P.; Kaur, A.; Kanwar, J. R.; Kennedy,
J. F. Cell disruption optimization and covalent immobilization of β-D-
galactosidase from Kluyveromyces marxianus YW-1 for lactose hydrolysis
in milk. Appl. Biochem. Biotechnol. 2010, 160, 98–108.
10484
dx.doi.org/10.1021/jf2022012 |J. Agric. Food Chem. 2011, 59, 10477–10484