Journal of the American Chemical Society
Communication
(18) The reactions of substrates bearing 1,2-disubstituted and
trisubstituted double bonds were unsuccessful, giving decyanation
products in modest yields.
Notes
The authors declare no competing financial interest.
(19) (a) Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127, 8644.
(b) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328. (c) For a
review of migratory insertion of alkenes into metal−nitrogen bonds, see:
Hanley, P. S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2013, 52, 8510.
(20) Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.; Hiyama, T.; Ohashi,
M.; Ogoshi, S. J. Am. Chem. Soc. 2010, 132, 10070.
(21) The attempted reactions of CpPd(allyl) or Pd(PPh3)4 with
Xantphos, Ph(Ac)N−CN, and BPh3 were sluggish.
(22) The use of PPh3 (20 mol %) instead of Xantphos under the
optimized reaction conditions with 1a gave no trace amount of 2a.
(23) Huang, J.; Haar, C. M.; Nolan, S. P.; Marcone, J. E.; Moloy, K. G.
Organometallics 1999, 18, 297.
ACKNOWLEDGMENTS
■
We thank Profs. Seijiro Matsubara and Keisuke Asano for their
assistance in chiral HPLC analysis and Profs. Yasushi Tsuji and
Tetsuaki Fujihara for generous use of their X-ray diffraction
instrument and their assistance in X-ray crystallographic analysis.
This work was financially supported by a Grant-in-Aid for
Scientific Research on Innovative Areas “Molecular Activation
Directed toward Straightforward Synthesis” (22105003) from
MEXT, the ACT-C Program of JST, The Uehara Memorial
Foundation, and The Asahi Glass Foundation.
(24) Wang, X.; Han, Z.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012,
51, 936.
REFERENCES
(25) For leading references on palladium/Lewis acid cooperative
systems, see: (a) Trost, B. M.; King, S. A.; Schmidt, T. J. Am. Chem. Soc.
1989, 111, 5902. (b) Tamaru, Y.; Horino, H.; Araki, M.; Tanaka, S.;
Kimura, M. Tetrahedron Lett. 2000, 41, 5705. (c) Ogoshi, S.; Tomiyasu,
S.; Morita, M.; Kurosawa, H. J. Am. Chem. Soc. 2002, 124, 11598.
(d) Tsuchimoto, T.; Kamiyama, S.; Negoro, R.; Shirakawa, E.;
Kawakami, Y. Chem. Commun. 2003, 852. (e) Lou, S.; Westbrook, J.
A.; Schaus, S. E. J. Am. Chem. Soc. 2004, 126, 11440. (f) Shen, Q.;
Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 7734. (g) Hirner, J. J.; Shi, Y.;
Blum, S. A. Acc. Chem. Res. 2011, 44, 603.
■
(1) (a) Chatani, N.; Hanafusa, T. J. Chem. Soc., Chem. Commun. 1985,
838. (b) Chatani, N.; Takeyasu, T.; Horiuchi, N.; Hanafusa, T. J. Org.
Chem. 1988, 53, 3539. (c) Suginome, M.; Kinugasa, H.; Ito, Y.
Tetrahedron Lett. 1994, 35, 8635. For 1,2-dicyanation using silyl
cyanides, see: (d) Arai, S.; Sato, T.; Koike, Y.; Hayashi, M.; Nishida, A.
Angew. Chem., Int. Ed. 2009, 48, 4528.
(2) Chatani, N.; Horiuchi, N.; Hanafusa, T. J. Org. Chem. 1990, 55,
3393.
(3) Obora, Y.; Baleta, A. S.; Tokunaga, M.; Tsuji, Y. J. Organomet.
Chem. 2002, 660, 173.
(4) (a) Suginome, M.; Yamamoto, A.; Murakami, M. J. Am. Chem. Soc.
2003, 125, 6358. (b) Suginome, M.; Yamamoto, A.; Murakami, M.
Angew. Chem., Int. Ed. 2005, 44, 2380. (c) Yamamoto, A.; Ikeda, Y.;
Suginome, M. Tetrahedron Lett. 2009, 50, 3168.
(26) For a review, see: Minatti, A.; Muniz, K. Chem. Soc. Rev. 2007, 36,
̃
1142.
(5) (a) Nakao, Y.; Hiyama, T. Pure Appl. Chem. 2008, 80, 1097.
(b) Nakao, Y. Bull. Chem. Soc. Jpn. 2012, 85, 731.
(6) Murai, M.; Hatano, R.; Kitabata, S.; Ohe, K. Chem. Commun. 2011,
47, 2375.
(7) (a) Kamiya, I.; Kawakami, J.; Yano, S.; Nomoto, A.; Ogawa, A.
Organometallics 2006, 25, 3562. (b) Lee, Y. T.; Choi, S. Y.; Chung, Y. K.
Tetrahedron Lett. 2007, 48, 5673.
(8) Koester, D. C.; Kobayashi, M.; Werz, D. B.; Nakao, Y. J. Am. Chem.
Soc. 2012, 134, 6544.
(9) (a) Zhang, H.; Pu, W.; Xiong, T.; Li, Y.; Zhou, X.; Sun, K.; Liu, Q.;
Zhang, Q. Angew. Chem., Int. Ed. 2013, 52, 2529. After submission of
this manuscript, arynes were shown to insert into N−CN bonds to
achieve intermolecular aminocyanation. See: (b) Rao, B.; Zeng, X. Org.
Lett. 2014, 16, 314.
(10) (a) Fukumoto, K.; Oya, T.; Itazaki, M.; Nakazawa, H. J. Am. Chem.
Soc. 2009, 131, 38. (b) Anbarasan, P.; Neumann, H.; Beller, M. Angew.
Chem., Int. Ed. 2011, 50, 519. (c) Dahy, A. A.; Koga, N.; Nakazawa, H.
Organometallics 2013, 32, 2725. (d) Wang, R.; Falck, J. R. Chem.
Commun. 2013, 49, 6516. (e) Gong, T.-J.; Xiao, B.; Cheng, W.-M.; Su,
W.; Xu, J.; Liu, Z.-J.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 10630.
(11) For a review, see: Larraufie, M.-H.; Maestri, G.; Malacria, M.;
̂
Ollivier, C.; Fensterbank, L.; Lacote, E. Synthesis 2012, 44, 1279.
(12) Vilet, E. B. Org. Synth. 1925, 5, 43.
(13) (a) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc.
2007, 129, 2428. (b) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa,
M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874.
(14) (a) Tolman, C. A.; Seidel, W. C.; Druliner, J. D.; Domaille, P. J.
Organometallics 1984, 3, 33. (b) Brunkan, N. M.; Brestensky, D. M.;
Jones, W. D. J. Am. Chem. Soc. 2004, 126, 3627.
(15) See the Supporting Information for the synthesis of the starting
cyanamides. Caution! All operations for the synthesis of cyanamides
must be carried out in a well-ventilated fume food because cyanogen
bromide (used for the N-cyanation of substituted anilines) is highly
toxic and can generate hydrogen cyanide upon hydrolysis.
(16) Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Acc.
Chem. Res. 2001, 34, 895.
(17) Shaw, B. L. Proc. Chem. Soc. 1960, 247.
3735
dx.doi.org/10.1021/ja4122632 | J. Am. Chem. Soc. 2014, 136, 3732−3735