Organic Letters
Letter
We also wanted to demonstrate the response to aqueous
fluoride solution in the form of test strips. To that end, we
impregnated PMMA with the chemiluminogen probe 9. The
polymer strips on glass were prepared. When these probes are
dipped into fluoride solutions in THF chemiluminescence is
triggered. Again, the luminescence intensity is related to the
fluoride concentration in solution (Figure 4). The photograph
ASSOCIATED CONTENT
* Supporting Information
Methods, experimental procedures, and additional spectral data.
This material is available free of charge via the Internet at
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We gratefully acknowledge support from TUBITAK in the
form of a scholarship to IST.
REFERENCES
■
Figure 4. PMMA on glass impregnated with probe 9, exposed to
increasing concentrations of F− (12.5 mM to 100 mM) in THF (top,
a−d). Same strips exposed to 250 mM fluoride in varying percentages
of DMSO buffer (PBS, pH 7.2) solvent mixture (e−h, 40, 30, 20,
10%).
(1) (a) Farley, J. R.; Wergedal, J. E.; Baylink, D. J. Science 1983, 222,
330−332. (b) Yang, Z.; Zhang, K.; Gong, F.; Li, S.; Chen, J.; Ma, J. S.;
Sobenina, L. N.; Mikhaleva, A. I.; Yang, G.; Trofimov, B. A. Beilstein J.
Org. Chem. 2011, 7, 46−52. (c) Horowitz, H. S. J. Public Health Dent.
2003, 63, 3−8. (d) Kleerekoper, M. Endocrinol. Metab. Clin. North Am.
1998, 27, 441−452. (e) Lennon, M. A. Bull. W. H. O. 2006, 84, 759−
760.
(2) (a) Van den Hoop, M. A. G.T.; Cleven, R. F. M. J.; van Staden, J.
J.; Neele, J. J. Chromatogr. 1996, 739, 241−248. (b) Arancibia, J. A.;
Rullo, A.; Olivieri, A. C.; Di Nezio, S.; Pistonesi, M.; Lista, A.; Band, B.
S. F. Anal. Chim. Acta 2004, 512, 157−163. (c) Breadmore, M. C.;
Palmer, A. S.; Curran, M.; Macka, M.; Avdalovic, N.; Haddad, P. R.
Anal. Chem. 2002, 74, 2112−2118. (d) Hutchinson, J. J.; Evenhius, C.
J.; Johns, C.; Kazarian, A. A.; Breadmore, M. C.; Macka, M.; Hilder, E.
F.; Guijt, R. M.; Dicinoski, G. W.; Haddad, P. R. Anal. Chem. 2007, 79,
7005−7013. (e) Neal, M.; Neal, C.; Wickham, H.; Harman, S. Hydrol.
Earth Syst. Sci. 2007, 11, 294−300.
was digitized, and the brightness of the strips was quantified.
The plot of brightness as a function of fluoride concentration
shows a reproducible relation. The effect of water content was
also investigated by varying the percentage of buffer in DMSO.
Because of the thickness of the polymeric layers and
inhomogeneity of diffusion of fluoride (Figure 4), the polymer
strips shows bright and dark patches except for the high
fluoride case, but the integrated luminescence data (Figure 5)
for the chemiluminescence triggered on the strips provides
usable analytical data.
(3) (a) Turan, I. S.; Cakmak, F. P.; Sozmen, F. Tetrahedron Lett.
2014, 55, 456−459. (b) Bozdemir, O. A.; Sozmen, F.; Buyukcakir, O.;
Guliyev, R.; Cakmak, Y.; Akkaya, E. U. Org. Lett. 2010, 12, 1400−
1403. (c) Ke, B.; Chen, W.; Ni, N.; Cheng, Y.; Dai, C.; Dinh, H.;
Wang, B. Chem. Commun. 2013, 49, 2494−2496. (d) Kim, Y.; Gabbai,
F. P. J. Am. Chem. Soc. 2009, 131, 3363−3369. (e) Swamy, K. M. K.;
Lee, Y. J.; Lee, H. N.; Chun, J.; Kim, Y.; Kim, S.-J.; Yoon, J. J. Org.
Chem. 2006, 71, 8626−8628. (f) Cao, X.; Lin, W.; Yu, Q.; Wang, J.
̌
́
Org. Lett. 2011, 13, 6098−6101. (g) Jo, M.; Lim, J.; Miljanic, O. S. Org.
Lett. 2013, 15, 3518−3521. (h) Kim, S. Y.; Hong, J.-I. Org. Lett. 2007,
9, 3109−3112. (i) Kim, H. J.; Kim, S. K.; Lee, J. Y.; Kim, J. S. J. Org.
Chem. 2006, 71, 6611−6614. (j) Feigenbaum-Perry, R.; Sella, E.;
Shabat, D. Chem.Eur. J. 2011, 17, 12123−12128.
(4) (a) Ciscato, L. F. M. L.; Weiss, D.; Beckert, R.; Baader, W. J.
Photochem. Photobiol. A 2011, 218, 41−47. (b) Ciscato, L. F. M. L.;
Bartoloni, F. H.; Weiss, D.; Beckert, R.; Baader, W. J. J. Org. Chem.
2010, 75, 6574−6580. (c) Ciscato, L. F. M. L.; Weiss, D.; Beckert, R.;
Bastos, E. L.; Bartoloni, F. H.; Baader, W. J. New J. Chem. 2010, 75,
6574−6580. (d) Schaap, A. P.; Sandison, M. D.; Handley, R. S.
Tetrahedron Lett. 1987, 28, 1159−1162. (e) Richard, J.-A.; Jean, L.;
Romieu, A.; Massonneau, M.; Noack-Fraissignes, P.; Renard, P.-Y. Org.
Lett. 2007, 9, 4853−4855. (f) Richard, J.-A.; Jean, L.; Schenkels, C.;
Massonneau, M.; Romieu, A.; Renard, P.-Y. Org. Biomol. Chem. 2009,
7, 2941−2957. (g) Di Fusco, M.; Quintavalla, A.; Trombini, C.;
Lombardo, M.; Roda, A.; Gurdigli, M.; Mirasoli, M. J. Org. Chem.
2013, 78, 11238−11246.
Figure 5. Integrated luminescence from the PMMA strips showing the
response to increasing fluoride concentrations in THF.
In conclusion, we demonstrated that multiple chemilumi-
nescence events can be triggered through use of a self-
immolative linker. This approach offers a chemical avenue for
enhancing the signal produced in response to a given analyte.
Considering the fact that chemiluminescence in principle can
provide a rapid, qualitative, and/or quantitative test for analytes
of interest, we are confident that other probes combining the
power of self-immolation and chemiluminescence will emerge.
Rapid assessment of fluoride concentrations in drinking water
could be a possible application, and the bright chemilumi-
nescence of the probe 9 or structurally related derivatives could
provide a promising alternative to current methods.
(5) (a) Matsumoto, M. J. Photochem. Photobiol. C 2004, 5, 27−53.
(b) Sabelle, S.; Renard, P.-Y.; Pecorella, K.; de Suzzoni-Dezard, S.;
Creminon, C.; Grassi, J.; Mioskowski, C. J. Am. Chem. Soc. 2002, 124,
4874−4880. (c) Augusto, F. A.; de Souza, G. A.; de Souza, S. P.;
Khalid, M.; Baader, W. J. Photochem. Photobiol. 2013, 89, 1299−1317.
1682
dx.doi.org/10.1021/ol5003412 | Org. Lett. 2014, 16, 1680−1683