towards the reagents, see Results and discussion section; to
prove this complex 4c (≈ 2 mg), independently prepared, was
reacted with KOH (≈ 5 mg) made partially soluble in CDCl3
(600 μL, NMR tube) by addition of 18-Crown-6 ether (≈ 5 mg).
Formation of
quantitatively.
Dr Carlo Mealli (ICCOM, CNR, Firenze, Italy) is gratefully
acknowledged for active discussion.
2 and free 2,6-Me2py, did occur almost
References
1 (a) W. C. Zeise, Overs. K. Dan. Vidensk. Selsk. Forth., 1825-26, 13;
(b) J. J. Berzelius, Jahresber. Fortfschr. Chem., 1826, 7, 129;
(c) W. C. Zeise, Ann. Phys. Chem., 1831, 97, 497.
2 R. A. Love, T. A. Koetzle, G. J. B. Williams, L. C. Andrews and R. Bau,
Inorg. Chem., 1975, 14, 2653.
trans-[PtCl2(η1-CH2CH2OH)(py)]−,
5a. NMR
(CDCl3,
2
300 MHz, 294 K): δH 2.16 (pseudo triplet of triplets, 2H, JPt,H
3
= 87 Hz, JH,H = 12 Hz, CαH2), 3.24 (pseudo triplet of triplets,
3
3
3 (a) M. J. S. Dewar, Bull. Soc. Chim. Fr., 1951, 18, C71; (b) J. Chatt and
L. A. Duncanson, J. Chem. Soc., 1953, 2939; (c) M. J. S. Dewar and
M. J. S. Ford, J. Am. Chem. Soc., 1979, 101, 783; (d) T. H. Chang and
J. I. Zink, J. Am. Chem. Soc., 1984, 106, 287.
4 (a) M. Benedetti, F. P. Fanizzi, L. Maresca and G. Natile, Chem.
Commun., 2006, 1118; (b) V. M. Vecchio, M. Benedetti, D. Migoni, S.
A. De Pascali, A. Ciccarese, S. Marsigliante, F. Capitelli and
F. P. Fanizzi, Dalton Trans., 2007, 5720; (c) C. R. Barone, M. Benedetti,
V. M. Vecchio, F. P. Fanizzi, L. Maresca and G. Natile, Dalton Trans.,
2008, 5313; (d) M. Benedetti, D. Antonucci, D. Migoni, V. M. Vecchio,
C. Ducani and F. P. Fanizzi, ChemMedChem, 2010, 5, 46.
5 S. I. Shupack, and S. F. Malin, DE 2531538, 1975 (Chem. Abstr. 1976,
84, 119869q)
6 D. M. P. Mingos, Advances in Organomet. Chem., ed. F. G. A. Stone and
R. West, Academic Press, New York, 1977, p. 15.
7 M. Benedetti, J. S. Saad, L. G. Marzilli and G. Natile, Dalton Trans.,
2003, 5, 872.
8 J. D. Atwood, Inorganic and organometallic Reaction Mechanisms,
Brooks & Cole Publishing Co, Monterey, 1985.
2H, JPt,H = 27 Hz, JH,H = 12 Hz, CβH2), 7.13 (t, 2H, Hmeta),
7.72 (t, 1H, Hpara), 9.12 (d, 2H, Hortho) ppm.
trans-[PtCl2(η1-CH2CH2OH)(4-Mepy)]−, 5b. NMR (CDCl3,
2
300 MHz, 294 K): δH 2.11 (pseudo triplet of triplets, 2H, JPt,H
3
= 84 Hz, JH,H = 13 Hz, CαH2), 2.19 (s, 3H, 4-Me-py), 3.21
(pseudo triplet of triplets, 3JPt,H n.d., 3JH,H = 13 Hz, CβH2), 6.94
(d, 2H, Hmeta), 8.91 (d, 2H, Hortho) ppm.
In the case of complex 3, all imines (L) gave an instantaneous
and complete reaction with formation of trans-[PtCl2(η1-
CH2NO2)(L)]−, 6.
trans-[PtCl2(η1-CH2NO2)(py)]−, 6a. NMR (CDCl3, 300 MHz,
2
294 K): δH 5.40 (pseudo triplet, 2H, JPt,H = 104 Hz,
-CH2NO2), 7.15 (t, 2H, Hmeta), 7.65 (t, 1H, Hpara),8.98 (d, 2H,
H
ortho) ppm.
9 Z. Lin and M. B. Hail, Inorg. Chem., 1991, 30, 646.
10 (a) F. P. Fanizzi, L. Maresca, G. Natile, M. Lanfranchi, A. Tiripicchio and
G. Pacchioni, J. Chem. Soc., Chem. Commun., 1992, 333; (b) L. Maresca
and G. Natile, Comments Inorg. Chem., 1993, 15, 349; (c) V. G. Albano,
G. Natile and A. Panunzi, Coord. Chem. Rev., 1994, 133, 67;
(d) F. P. Fanizzi, N. Margiotta, M. Lanfranchi, A. Tiripicchio,
G. Pacchioni and G. Natile, Eur. J. Inorg. Chem., 2004, 1705.
11 A. C. Hutson, M. Lin, M. Basickes and A. Sen, J. Organomet. Chem.,
1995, 504, 69.
trans-[PtCl2(η1-CH2NO2)(4-Mepy)]−, 6b. NMR (CDCl3,
2
300 MHz, 294 K): δH 5.40 (pseudo triplet, 2H, JPt,H = 104 Hz,
-CH2NO2), 2.23 (s, 3H, 4-Me-py), 7.20 (d, 2H, Hmeta), 8.60 (d,
2H, Hortho) ppm.
trans-[PtCl2(η1-CH2NO2)(2,6-Me2py)]−, 6c. NMR (CDCl3,
12 (a) T. Yoshida, T. Okano and S. Otsuka, J. Chem. Soc., Dalton Trans.,
1976, 993; (b) T. G. Appleton and M. A. Bennett, Inorg. Chem., 1978,
17, 738.
2
300 MHz, 294 K): δH 5.38 (pseudo triplet, 2H, JPt,H = 104 Hz,
-CH2NO2), 2.48 (s, 6H, 2,6-Me2-py), 6.92 (d, 2H, Hmeta), 7.43
13 S. Otto and L. I. Elding, J. Chem. Soc., Dalton Trans., 2002, 11, 2354.
14 It is known that deuterochloroform develops traces of DCl, to overcome
this problem the solvent can be stored over an inorganic carbonate (i.e.
Na2CO3). When (PPh4)2 is dissolved in untreated CDCl3, some Zeise’s
anion (easily recognizable by the NMR frequency of its ethene protons at
4.33 ppm) immediately forms and its concentration raises with time. The
here reported NMR data of 2 were measured in untreated CDCl3, while
all the reactions with pyridines were carried out in CDCl3 free from DCl.
15 D. B. Grotjahn, Y. Gong, A. G. Di Pasquale, L. N. Zakharov and A.
L. Rheingold, Organometallics, 2006, 25, 5693.
16 E. Poverenov, M. Gandelman, L. J. W. Shimon, H. Rozenberg, Y. Ben-
David and D. Milstein, Organometallics, 2005, 24, 1082.
17 (a) C. Scriban, D. S. Glueck, J. A. Golen and A. L. Rheingold, Organo-
metallics, 2007, 26, 1788; (b) B. F. Straub, F. Rominger and P. Hofmann,
Inorg. Chem. Commun., 2000, 3, 214.
(t, 1H, Hpara) ppm.
X-Ray structure determinations. Data collection for (PPh4)2
was performed on a Nonius CAD4 automatic diffractometer at
room temperature. The intensities were corrected for Lorentz-
polarization and empirical correction for absorption, using Ψ
scan, was applied.38 For complex (PPh4)3 the data were collected
on an Oxford Diffraction Excalibur 3 diffractometer equipped
with CCD area detector at 150 K. The program CrysAlis CCD39
was used. Data reductions (including absorption corrections)
were carried out with the program CrysAlis RED.40 Data collec-
tion details are given in Table 4.
The structures were solved by direct methods using SIR9741
and refined by full-matrix F2 refinement using SHELX97,42 with
anisotropic thermal parameters assigned to all non-hydrogen
atoms. All the calculations were performed using the package
WINGX.43 In (PPh4)3 a merohedral twin is present and the twin
component was found to be 0.569(9).
18 J. F. Britten, B. Lippert, C. J. L. Lock and P. Pilon, Inorg. Chem., 1982,
21, 1936.
19 M. Schmulling, D. M. Grove, G. van Koten, R. van Eldik, N. Veldman
and A. L. Spek, Organometallics, 1996, 15, 1384.
20 W. Baratta, S. Stoccoro, A. Doppiu, E. Herdtweck, A. Zucca and P. Rigo,
Angew. Chem., Int. Ed., 2003, 42, 105.
21 (a) J. K. Stalick and J. A. Ibers, J. Am. Chem. Soc., 1970, 92, 5333;
(b) J. S. Ricci and J. A. Ibers, J. Am. Chem. Soc., 1971, 93, 2391.
22 (a) P. J. Hay, J. Am. Chem. Soc., 2000, 104, 8131; (b) G. M. Bernard, R.
E. Wasylishen and A. D. Phillips, J. Phys. Chem, 2000, 104, 8131.
23 K. Miki, Y. Kai, N. Kasai and H. Kurosawa, J. Am. Chem. Soc., 1983,
105, 2482.
Acknowledgements
24 M. Rubio, A. Suàrez, D. del Río, A. Galindo, E. Alvarez and A. Pizzano,
Organometallics, 2009, 28, 547.
25 (a) R. H. Crabtree, The Organometallic Chemistry of Transition Metals
5th, John Wiley & Sons, New York, 2009; (b) D. Astruc, Organometallic
Chemistry and Catalysis, Springer, 2007.
The University of Salento (Italy) and the Consorzio Interuniver-
sitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici
(CIRCMSB), Bari (Italy) are acknowledged for financial
support.
3020 | Dalton Trans., 2012, 41, 3014–3021
This journal is © The Royal Society of Chemistry 2012