COMMUNICATIONS
ent 10/1!5/1 hexanes/EtOAc) furnished 22 mg of an insepa-
rable mixture of 3aa and 5aa (yields: 29% and 5% deter-
mined from H NMR) and 30 mg (yield: 45%) of 4aa as col-
Domínguez, J. PØrez-Castells, Chem. Soc. Rev. 2011, 40,
3430–3444; e) D. L. J. Broere, E. Ruijter, Synthesis
2012, 2639–2672. For applications of the metal-cata-
lyzed [2+2+2]cycloaddition reaction in natural product
synthesis, see: f) B. Witulski, J. Grand, in: Application
to the Synthesis of Natural Products, in: Transition-
Metal-Mediated Aromatic Ring Construction, (Ed.: K.
Tanaka), John Wiley & Sons, Hoboken, NJ, USA, 2013,
pp 207–254.
1
ourless solids. The combined yield is 79%.
3aa: mp 1688C (for a mixture containing 5aa); H NMR
1
(600 MHz, CDCl3): d=5.24 (t, J=2.4 Hz, 2H, CH2), 5.05 (t,
J=2.4 Hz, 2H, CH2), 4.44 (q, J=7.1 Hz, 2H, CH2), 2.36 (s,
3H, CH3), 1.42 (t, J=7.1 Hz, 3H, CH3); 13C NMR
(150 MHz, CDCl3): d=165.23, 150.24, 148.83, 143.74, 128.30,
106.17, 76.44, 74.52, 62.18, 15.76, 14.37; IR (3aa+5aa; drift
KBr): nmax =2977, 1709, 1467, 1413, 1380, 1281, 1183, 1063,
1099, 905 cmÀ1; HR-MS (EI-TOF): m/z=332.9861, calculat-
ed for C11H12NO3I (M): 332.9862; Rf (5/1 hexanes/EtOAc)=
0.31 (the same value for 3aa and 5aa).
[4] Y. Yamamoto, T. Hashimoto, K. Hattori, M. Kikuchi,
H. Nishiyama, Org. Lett. 2006, 8, 3565–3568.
[5] a) Y. Yamamoto, K. Hattori, H. Nishiyama, J. Am.
Chem. Soc. 2006, 128, 8336–8340; b) Y. Yamamoto, K.
Hattori, Tetrahedron 2008, 64, 847–855; c) Y. Yamamo-
to, R. Takuma, T. Hotta, K. Yamashita, J. Org. Chem.
2009, 74, 4324–4328; d) Y. Yamamoto, K. Yamashita, Y.
Harada, Chem. Asian J. 2010, 5, 946–952; e) L. Iannaz-
zo, N. Kotera, M. Malacria, C. Aubert, V. Gandon, J.
Organomet. Chem. 2011, 696, 3906–3908.
[6] S. Melnes, A. Bayer, O. R. Gautun, Tetrahedron 2012,
68, 8463–8471.
[7] K. C. Nicolaou, Y. Tang, J. Wang, Angew. Chem. 2009,
121, 3501–3505; Angew. Chem. Int. Ed. 2009, 48, 3449–
3453.
1
3ca: mp 112.48C; H NMR (600 MHz, CDCl3): d=5.18 (s,
4H, 2CH2), 4.44 (q, J=7.1 Hz, 2H, CH2), 2.41 (s, 3H,
CH3), 1.42 (t, J=7.1 Hz, 3H, CH3); 13C NMR (150 MHz,
CDCl3): d=165.21, 153.15, 147.58, 141.41, 136.33, 128.08,
74.08, 73.18, 62.20, 15.88, 14.38; IR (drift KBr): nmax =1715,
1470, 1416, 1311, 1290, 1260, 1186, 1066, 1039, 905 cmÀ1
;
HR-MS
(EI-TOF):
m/z=241.0503,
calculated
for
C11H12NO3Cl (M): 241.0506.
1
4aa: mp 1138C; H NMR (600 MHz, CDCl3): d=5.26 (t,
J=2.1 Hz, 2H, CH2), 5.06 (t, J=2.1 Hz, 2H, CH2), 4.47 (q,
J=7.1 Hz, 2H, CH2), 2.44 (s, 3H, CH3), 1.44 (t, J=7.1 Hz,
3H, CH3); 13C NMR (150 MHz, CDCl3): d=166.17, 155.36,
151.49, 151.02, 135.65, 80.69, 78.74, 73.78, 62.53, 21.70, 14.31;
IR (drift KBr): nmax =1730, 1419, 1377, 1335, 1308, 1204,
1159, 1060, 905, 854 cmÀ1; HRMS (EI-TOF): m/z=332.9864,
calculated for C11H12NO3I (M): 332.9862; Rf (5/1 hexanes/
EtOAc)=0.16.
[8] J. S. Oakdale, R. K. Sit, V. V. Fokin, Chem. Eur. J. 2014,
20, 11101–11110.
[9] For reviews, see: a) G. Chelucci, R. P. Thummel, Chem.
Rev. 2002, 102, 3129–3170; b) S. E. Denmark, G. L.
Beutner, Angew. Chem. 2008, 120, 1584–1663; Angew.
Chem. Int. Ed. 2008, 47, 1560–1638; c) V. C. Gibson, C.
Redshaw, G. A. Solan, Chem. Rev. 2007, 107, 1745–
1776; d) R. P. Wurz, Chem. Rev. 2007, 107, 5570–5595;
e) M. Kotora, Pure Appl. Chem. 2010, 82, 1813–1826.
[10] C. Bolm, M. Ewald, M. Felder, G. Schlingloff, Chem.
Ber. 1992, 125, 1169–1190.
For further experimental details, characterization for all
new compounds, and X-ray data,[22] see the Supporting In-
formation.
[11] For oxidative addition of haloalkynes to Co, Au and Pd
complexes see: a) D. Cummins, E. D. McKenzie, J. Or-
ganomet. Chem. 1975, 87, C19–C21; b) O. Schuster, H.
Schmidbaur, Inorg. Chim. Acta 2006, 359, 3769–3775;
c) A. Kurbangalieva, D. Carmichael, K. K. (Mimi) Hii,
A. Jutand, J. M. Brown, Chem. Eur. J. 2014, 20, 1116–
1125.
Acknowledgements
This work was supported by a grant from the Czech Science
Foundation (P207/11/0587). The authors would like to thank
ˇ
Dr. Ivana Císarovµ (Department of Inorganic Chemistry,
Charles University in Prague) for the X-ray structure deter-
minations. Financial support from the French Embassy in
Prague is acknowledged.
[12] A. Goswami, T. Ito, S. Okamoto, Adv. Synth. Catal.
2007, 349, 2368–2374.
[13] For reviews, see: a) A. Vigalok, Chem. Eur. J. 2008, 14,
5102–5108; b) T. D. Sheppard, Org. Biomol. Chem.
2009, 7, 1043–1052; c) A. Vigalok, A. W. Kaspi, Top.
Organomet. Chem. 2010, 31, 19–38.
References
[14] a) E. Shirakawa, Z. Imazaki, T. Hayashi, Chem.
Commun. 2009, 5088–5090; b) Y. Imazaki, E. Shiraka-
wa, R. Ueno, T. Hayash, J. Am. Chem. Soc. 2012, 134,
14760–14762.
[15] H. Kuniyasu, A. Sanagawa, T. Nakajima, T. Iwasaki, N.
Kambe, K. Bobuatong, M. Ehara, J. Organomet. Chem.
2014, 769, 34–37.
[1] a) G. Zassinovich, G. Mestroni, S. Gladiali, Chem. Rev.
1992, 92, 1051–1070; b) F. Fache, E. Schulz, M. L. Tom-
masino, M. Lemaire, Chem. Rev. 2000, 100, 2159–2231;
c) N. C. Fletcher, J. Chem. Soc. Perkin Trans. 1 2002,
1831–1842; d) E. Meggers, Chem. Eur. J. 2010, 16, 752–
758; e) R. H. Doerrer, Dalton Trans. 2010, 39, 3543–
3553.
[16] M. D. M. C. Ribeiro da Silva, M. S. Miranda, C. M. V.
Vaz, M. A. R. Matos, W. E. Acree, J. Chem. Thermo-
dyn. 2005, 37, 49–53.
[2] M. D. Hill, Chem. Eur. J. 2010, 16, 12052–12062.
[3] For recent reviews on transition metal-catalyzed
[2+2+2]cycloadditions for pyridine synthesis, see: a) N.
Weding, M. Hapke, Chem. Soc. Rev. 2011, 40, 4525–
4538; b) Y.-K. Sugiyama, S. Okamoto, Synthesis 2011,
2247–2254; c) M. R. Shaaban, R. El-Sayed, A. H. M.
Elwahy, Tetrahedron 2011, 67, 6095–6130; d) G.
[17] E. T. Denisov, Zh. Fiz. Khim. 1995, 69, 623–631.
À
À
[18] As for the BDE for Ru Cl and Ru I bonds, only two
sets of data are available. The first one shows that
À
À
BDE for Ru I is slightly higher than for Ru CI,
Adv. Synth. Catal. 2016, 358, 1916 – 1923
1922
ꢁ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim