ChemComm
Communication
Table 2 1,4-Hydrosilylation of various conjugated cyclic enones using the
AuPdNPore-1 catalysta,b
41, 8099; (d) R. Ferrando, J. Jellinek and R. L. Johnston, Chem. Rev.,
2008, 108, 845; (e) A. S. K. Hashmi and G. J. Hutchings, Angew.
Chem., Int. Ed., 2006, 45, 7896.
3 Our contributions on nanoporous metal catalysts, see: (a) N. Asao,
Y. Ishikawa, N. Hatakeyama, Menggenbateer, Y. Yamamoto, M. Chen,
W. Zhang and A. Inoue, Angew. Chem., Int. Ed., 2010, 49, 10093;
(b) N. Asao, T. Jin, S. Tanaka and Y. Yamamoto, Pure Appl. Chem., 2012,
84, 1771; (c) N. Asao, N. Hatakeyama, Menggenbateer, T. Minato, E. Ito,
M. Hara, Y. Kim, Y. Yamamoto, M. Chen, W. Zhang and A. Inoue, Chem.
Commun., 2012, 48, 4540; (d) M. Yan, T. Jin, Y. Ishikawa, T. Minato, T. Fujita,
L.-Y. Chen, M. Bao, N. Asao, M.-W. Chen and Y. Yamamoto, J. Am. Chem.
Soc., 2012, 134, 17536; (e) M. Yan, T. Jin, Q. Chen, H. E. Ho, T. Fujita,
L.-Y. Chen, M. Bao, M.-W. Chen, N. Asao and Y. Yamamoto, Org. Lett., 2013,
15, 1484; ( f) Y. Ishikawa, Y. Yamamoto and N. Asao, Catal. Sci. Technol.,
2013, 3, 2902; (g) S. Tanaka, T. Minato, E. Ito, M. Hara, Y. Kim, Y. Yamamoto
and N. Asao, Chem.–Eur. J., 2013, 19, 11832; (h) Q. Chen, J. Zhao, Y. Ishikawa,
N. Asao, Y. Yamamoto and T. Jin, Org. Lett., 2013, 15, 5766; (i) T. Jin, M. Yan,
Menggenbateer, T. Minato, M. Bao and Y. Yamamoto, Adv. Synth. Catal.,
2011, 353, 3095; ( j) S. Tanaka, T. Kaneko, N. Asao, Y. Yamamoto,
M.-W. Chen, W. Zhang and A. Inoue, Chem. Commun., 2011, 47, 5985;
(k) T. Kaneko, S. Tanaka, N. Asao, Y. Yamamoto, M.-W. Chen, W. Zhang and
A. Inoue, Adv. Synth. Catal., 2011, 353, 2927; (l) Y. Yamamoto, Tetrahedron,
2013, DOI: 10.1016/j.tet.2013.09.065; (m) B. Takale, M. Bao and
Y. Yamamoto, Org. Biomol. Chem., 2014, DOI: 10.1039/C3OB42207K.
4 (a) Y. Ding and M. W. Chen, MRS Bull., 2009, 34, 569; (b) T. Fujita,
P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga,
S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto,
J. Erlebacher and M. W. Chen, Nat. Mater., 2012, 11, 775.
a
Reaction conditions: conjugated cyclic enones 1 (2.0 mmol), HSiEt3
(2.0 mmol), and AuPdNPore-1 (2.5 mol%) at 100 1C without solvents. b Isolated
yields of products 2. c 3-Methylcyclohex-2-enone was used as a starting sub-
stance. d 5-Methylcyclohex-2-enone was used as a starting substance.
geometric structures of the nanoporous catalyst, but Al itself
may not directly incorporate in the catalysis as an active catalyst
species as indicated in entries 1–4 in Table 1.
The catalytic properties of AuPdNPore-1 were further examined
by the reaction with various conjugated cyclic enones (Table 2). The
monomethyl- and dimethyl-substituted cyclohexen-2-ones were
compatible with the present heterogeneous catalytic systems, giving
the desired silyl ethers in high yields, while both 3-methyl- and
5-methylcyclohex-2-enones produced a mixture of regioisomers 2b
and 2c. The 1,2-addition by-products 3 have never been observed
and only a less than 4% of the phenol silyl ethers 4 were observed
in the case of 2a–d. The cyclopenten-2-one and cyclohepten-2-one
also underwent selective 1,4-hydrosilylation sufficiently, affording
the corresponding silyl ethers in good to high yields.
In conclusion, we have demonstrated for the first time that the
uniformly distributed nanoporous AuPd alloy catalysts showed a
remarkable synergistic effect for the heterogeneous 1,4-hydrosilylation
of conjugated cyclic enones with organosilane in comparison with
nanoporous monometallic catalysts. The catalytic performances and
characterization disclose that the alloy effect of AuPdNPore plays a
crucial role in the reaction efficiency and product selectivity. Further
investigation of the underlying mechanism and application to
new synthetic methodologies are in progress.
5 (a) V. Zielasek, B. Ju¨rgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza
¨
and M. Baumer, Angew. Chem., Int. Ed., 2006, 45, 8241; (b) C. Xu, J. Su,
X. Xu, P. Liu, H. Zhao, F. Tian and Y. Ding, J. Am. Chem. Soc., 2007, 129, 42;
(c) C. Xu, X. Xu, J. Su and Y. Ding, J. Catal., 2007, 252, 243; (d) A. Wittstock,
B. Neumann, A. Schaefer, K. Dumbuya, C. Ku¨bel, M. M. Biener, V. Zielasek,
¨
H. P. Steinru¨ck, J. M. Gottfried, J. Biener, A. Hamza and M. Baumer, J. Phys.
Chem. C, 2009, 113, 5593; (e) L. C. Wang, H. J. Jin, D. Widmann,
J. Weissmuller and R. J. Behm, J. Catal., 2011, 278, 219.
¨
6 (a) A. Wittstock, V. Zielasek, J. Biener, C. M. Friend and M. Baumer,
Science, 2010, 327, 319; (b) H. Yin, C. Zhou, C. Xu, P. Liu, X. Xu and
Y. Ding, J. Phys. Chem. C, 2008, 112, 9673; (c) K. M. Kosuda, A. Wittstock,
¨
C. M. Friend and M. Baumer, Angew. Chem., Int. Ed., 2012, 51, 1698.
7 (a) J. Zhang, P. Liu, H. Ma and Y. Ding, J. Phys. Chem. C, 2007,
111, 10382; (b) C. Yu, F. Jia, Z. Ai and L. Zhang, Chem. Mater., 2007,
19, 6065; (c) R. Zeis, T. Lei, K. Sieradzki, J. Snyder and J. Erlebacher,
J. Catal., 2008, 253, 132.
8 For selected examples, see: (a) J. Snyder, P. Asanithi, A. B. Dalton and
J. Erlebacher, Adv. Mater., 2008, 20, 4883; (b) J. S. Yu, Y. Ding, C. X. Xu,
A. Inoue, T. Sakurai and M. W. Chen, Chem. Mater., 2008, 20, 4548;
(c) C. X. Xu, Y. Zhang, L. Q. Wang, L. Q. Xu, X. F. Bian, H. Y. Ma and
Y. Ding, Chem. Mater., 2009, 21, 3110; (d) J. Snyder, T. Fujita, M. W. Chen
and J. Erlebacher, Nat. Mater., 2010, 9, 904; (e) Z. Zhang, Y. Wang and
X. Wang, Nanoscale, 2011, 3, 1663; ( f ) L. Chen, H. Guo, T. Fujita,
A. Hirata, W. Zhang, A. Inoue and M. W. Chen, Adv. Funct. Mater.,
2011, 21, 4364; (g) L. Y. Chen, N. Chen, Y. Hou, Z. C. Wang, S. H. Lv,
T. Fujita, J. H. Jiang, A. Hirata and M. W. Chen, ACS Catal., 2013, 3, 1220.
9 (a) A. J. Forty, Nature, 1979, 282, 597; (b) J. Erlebacher, M. J. Aziz,
A. Karma, N. Dimitrov and K. Sieradzki, Nature, 2001, 410, 450.
10 J. K. Rasumussen, Synthesis, 1977, 91.
11 For selected reviews, see: (a) C. Deutsch, N. Krause and B. H. Lipshutz,
Chem. Rev., 2008, 108, 2916; For selected examples, see: (b) W. S. Mahonev,
D. M. Brestensky and J. M. Stryker, J. Am. Chem. Soc., 1988, 110, 291;
(c) E. Keinan and N. Greenspoon, J. Am. Chem. Soc., 1986, 108, 7314;
(d) C. R. Johnson and R. K. Raheja, J. Org. Chem., 1994, 59, 2287; (e) I. Ojima
and T. Kogure, Organometallics, 1982, 1, 1390; ( f) J. M. Blackwell, D. J.
Morrison and W. E. Piers, Tetrahedron, 2002, 58, 8247; (g) A. S. K. Hashmi,
Gold Bull., 2004, 37, 51.
This work was supported by a Scientific Research (A) from
Japan Society for Promotion of Science (JSPS) (No. 23245020),
and World Premier International Research Center Initiative
(WPI), MEXT, Japan. Q.C. acknowledges the support of the China
Scholarship Council (CSC).
Notes and references
1 For recent selected reviews, see: (a) Nanoparticles and catalysis, ed.
D. Astruc, Wiley-VCH, Weinheim, 2008; (b) M. Haruta, Chem. Rec., 12 1,4-Hydrosilylation of acyclic conjugated enones catalysed by palladium
2003, 3, 75; (c) T. Matsumoto, M. Ueno, N. Wang and S. Kobayashi,
Chem.–Asian. J., 2008, 3, 196; (d) T. Jin, M. Yan and Y. Yamamoto,
nanoparticles generated in situ has been reported, see: M. Benohoud,
S. Tuokko and P. M. Pihko, Chem.–Eur. J., 2011, 17, 8404.
ChemCatChem, 2012, 4, 1217; (e) J. Shi, Chem. Rev., 2013, 113, 2139. 13 (a) J. A. Lopez-Sanchez, N. Dimitratos, C. Hammond, G. L. Brett,
2 For recent selected reviews, see: (a) A. Corma and H. Garcia, Chem.
Soc. Rev., 2008, 37, 2096; (b) F. Gao and D. W. Goodman, Chem. Soc.
Rev., 2012, 41, 8009; (c) M. Sankar, N. Dimitratos, P. J. Miedziak,
P. P. Wells, C. J. Kiely and G. J. Hutchings, Chem. Soc. Rev., 2012,
L. Kesavan, S. White, P. Miedziak, R. Tiruvalam, R. L. Jenkins,
A. F. Carley, D. Knight, C. J. Kiely and G. J. Hutchings, Nat. Chem., 2011,
3, 551; (b) X. Yuan, G. Sun, H. Asakura, T. Tanaka, X. Chen, Y. Yuan,
G. Laurenczy, Y. Kou, P. J. Dyson and N. Yan, Chem.–Eur. J., 2013, 19, 1227.
3346 | Chem. Commun., 2014, 50, 3344--3346
This journal is ©The Royal Society of Chemistry 2014